Improving Coupling of Multiscale Computational Models within the Adaptive Hydraulics Framework

GAJANAN CHOUDHARY

Overview

Introduction

Theory

Example

Discussion

Introduction

Adaptive Hydraulics (AdH):

- 2D and 3D shallow water (SW) equations
- 3D Navier-Stokes equations
- Barotropic/baroclinic transport of constituents (salinity, temperature, sediments, etc.)
- Spatiotemporal adaptivity

(US Army Corps of Engineers)

"To algebraically couple 2D and 3D shallow water models in AdH, in a conservative manner"

Solution method

Spatial discretization of PDE's to generate nonlinear ODE's in time

• Streamline upwind Petrov-Galerkin (SUPG) method

Temporal discretization of nonlinear ODE's to generate a system of nonlinear equations

• Up to second order implicit finite difference method

Nonlinear equations solved using Newton-Raphson iterative method

AdH: 2D SW models

Equations after applying SUPG

• Depth integrated continuity equation (1)

$$\sum_{e} \left[\int_{\Omega_{e}^{2D}} \underbrace{\left[\phi_{i} \frac{\partial h}{\partial t} - \nabla^{2D} \phi_{i} \cdot (\overline{\boldsymbol{v}}h) \right] d\Omega_{e}^{2D}}_{Interior \ terms \ (IBP)} + \oint_{\partial \Omega_{e}^{1D} \ Boundary \ terms \ (mass \ flux)} \underbrace{\left[\phi_{i}(\overline{\boldsymbol{v}}h) \cdot \boldsymbol{n} \right] d\partial \Omega_{e}^{1D}}_{SUPG \ terms} \right] = 0$$
(1)

• Depth integrated horizontal momentum equations (2) and (3)

$$\sum_{e} \left[\int_{\Omega_{e}^{2D}} \underbrace{ \left[\frac{\phi_{i} \frac{\partial(\bar{u}h)}{\partial t} - \frac{\partial\phi_{i}}{\partial x} \left(\bar{u}\bar{u}h + \frac{gh^{2}}{2} - \frac{h\sigma_{xx}}{\rho} \right) - \frac{\partial\phi_{i}}{\partial y} \left(\bar{u}\bar{v}h - \frac{h\sigma_{xy}}{\rho} \right) \right] d\Omega_{e}^{2D}}_{Interior \ terms \ (IBP)} + \oint_{\partial\Omega_{e}^{1D}} \underbrace{ \left[\frac{\phi_{i}n_{x} \left(\bar{u}\bar{u}h + \frac{gh^{2}}{2} - \frac{h\sigma_{xx}}{\rho} \right) + \phi_{i}n_{y} \left(\bar{u}\bar{v}h - \frac{h\sigma_{xy}}{\rho} \right) \right] d\partial\Omega_{e}^{1D}}_{Boundary \ terms \ (momentum \ flux)} = 0$$

$$\sum \left[\oint_{\Phi} \left[\frac{\phi_{i} \frac{\partial(\bar{v}h)}{\partial t} - \frac{\partial\phi_{i}}{\partial y} \left(\bar{v}\bar{v}h + \frac{gh^{2}}{2} - \frac{h\sigma_{yy}}{\rho} \right) \right] - \frac{\partial\phi_{i}}{\partial y} \left(\bar{v}\bar{v}h + \frac{gh^{2}}{2} - \frac{h\sigma_{yy}}{\rho} \right) \right] d\Omega_{e}^{2D} + \int_{\Phi} \left[\frac{\phi_{i}n_{x} \left(\bar{v}\bar{v}h - \frac{h\sigma_{yx}}{\rho} \right) + \phi_{i}n_{y} \left(\bar{v}\bar{v}h - \frac{h\sigma_{yy}}{\rho} \right) \right] d\partial\Omega_{e}^{1D} + \bar{P}_{e}^{my} \right] = 0$$

$$\sum_{e} \left[\underbrace{ \oint_{\Omega_{e}^{2D}} \underbrace{ \left[\underbrace{\phi_{i} - \partial_{t} - \partial_{x} \left(\frac{\nu u n}{\rho} - \frac{\rho}{\rho} \right) - \frac{\partial_{y} \left(\frac{\nu v n}{\rho} - \frac{\rho}{\rho} \right) \right] d\Omega_{e}}_{Interior \ terms \ (IBP)} + \underbrace{ \oint_{\partial\Omega_{e}^{1D}} \underbrace{ \left[\underbrace{\phi_{i} n_{x} \left(\frac{\nu u n}{\rho} - \frac{\rho}{\rho} \right) + \phi_{i} n_{y} \left(\frac{\nu v n}{\rho} + \frac{\rho}{2} - \frac{\rho}{\rho} \right) \right] d\Omega_{e}}_{Boundary \ terms \ (momentum \ flux)} + \underbrace{ \underbrace{ e}_{SUPG \ terms}}_{SUPG \ terms} \right]^{-0}$$

$$(3)$$

AdH: 3D SW models

Equations after applying SUPG

• Depth summed continuity equation (4)

$$\sum_{i \in \mathcal{C}(I)} \sum_{e} \left[\int_{\Omega_{e}^{3D}} \underbrace{\left[-\nabla \phi_{i} \cdot \boldsymbol{v} \right] d\Omega_{e}^{3D}}_{Interior \ terms \ (IBP)} \right] + \sum_{e} \left[\int_{\partial \Omega_{e,s}^{2D}} \underbrace{\left[\phi_{i} \frac{\partial \eta}{\partial t} n_{z} \right] d\partial \Omega_{e,s}^{2D}}_{Surface \ mass \ flux} + \int_{\partial \Omega_{e,b}^{2D}} \underbrace{\left[\phi_{i} \frac{\partial b}{\partial t} n_{z} \right] d\partial \Omega_{e,b}^{2D}}_{Bed \ mass \ flux} \right] + \sum_{i \in \mathcal{C}(I)} \sum_{e} \int_{\partial \Omega_{e,v}^{2D}} \underbrace{\left[\phi_{i} \boldsymbol{v} \cdot \boldsymbol{n} \right] d\partial \Omega_{e,v}^{2D}}_{SUPG \ terms} = 0$$

$$(4)$$

• Horizontal momentum equations (5) and (6)

$$\sum_{e} \left[\frac{\partial}{\partial t} \int_{\Omega_{e}^{3D} Interior \ terms \ (IBP)} \left[\frac{[\phi_{i}u] d\Omega_{e}^{3D}}{\Omega_{e}^{3D}} + \int_{\Omega_{e}^{3D}} \left[\frac{-\nabla \phi_{i} \cdot (\boldsymbol{v}_{r}u) - \phi_{i} f \boldsymbol{v} + \frac{\partial \phi_{i}}{\partial x} \frac{P}{\rho_{0}} + \nabla \phi_{i} \cdot \boldsymbol{\tau}_{x} \right] d\Omega_{e}^{3D}}{Interior \ terms \ (IBP)} + \int_{\partial\Omega_{e,v}^{2D}} \left[\frac{\phi_{i}\boldsymbol{n} \cdot (\boldsymbol{v}_{r}u) + n_{x} \frac{P}{\rho_{0}}}{\frac{\partial \Omega_{e,w}^{2D}}{\partial x} - \frac{\partial \Omega_{e,w}^{2D}}{\partial \Omega_{e,w}^{2D}}} - \int_{\partial\Omega_{e,w}^{2D}} \frac{[\phi_{i}(\boldsymbol{\tau}_{x} \cdot \boldsymbol{n})] d\partial\Omega_{e,w}^{2D}}{Side \ wall \ stress}} + \underbrace{P_{e}^{mx}}{SUPG \ terms} \right] = 0$$

$$(5)$$

$$\sum_{e} \left[\frac{\partial}{\partial t} \int_{\Omega_{e}^{3D} Interior \ terms \ (IBP)} \underbrace{\left[\phi_{i} v \right] d\Omega_{e}^{3D}}_{Interior \ terms \ (IBP)} + \int_{\Omega_{e}^{3D}} \underbrace{\left[-\nabla \phi_{i} \cdot (\boldsymbol{v}_{r} v) + \phi_{i} f u + \frac{\partial \phi_{i}}{\partial y} \frac{P}{\rho_{0}} + \nabla \phi_{i} \cdot \boldsymbol{\tau}_{y} \right] d\Omega_{e}^{3D}}_{Interior \ terms \ (IBP)} + \int_{\partial \Omega_{e,v}^{2D}} \underbrace{\left[\phi_{i} \boldsymbol{n} \cdot (\boldsymbol{v}_{r} v) + n_{y} \frac{P}{\rho_{0}} \right] d\partial \Omega_{e,v}^{2D}}_{Vertical \ boundary \ momentum \ flux}} - \int_{\partial \Omega_{e,w}^{2D}} \underbrace{\left[\phi_{i} (\boldsymbol{\tau}_{y} \cdot \boldsymbol{n}) \right] d\partial \Omega_{e,w}^{2D}}_{SUPG \ terms}}_{SUPG \ terms}} = 0$$

$$(6)$$

AdH: Final equations

2D SW models:

$$\boldsymbol{r}_{2D}^{1} = \begin{cases} r_{1,2D}^{mx} (\boldsymbol{s}_{2D}(t^{n+1})) = 0 \\ r_{1,2D}^{my} (\boldsymbol{s}_{2D}(t^{n+1})) = 0 \\ r_{1,2D}^{c} (\boldsymbol{s}_{2D}(t^{n+1})) = 0 \end{cases}$$
$$\boldsymbol{r}_{2D}^{2} = \begin{cases} r_{2,2D}^{mx} (\boldsymbol{s}_{2D}(t^{n+1})) = 0 \\ r_{2,2D}^{my} (\boldsymbol{s}_{2D}(t^{n+1})) = 0 \\ r_{2,2D}^{c} (\boldsymbol{s}_{2D}(t^{n+1})) = 0 \end{cases}$$
$$\vdots$$
$$r_{N,2D}^{c} (\boldsymbol{s}_{2D}(t^{n+1})) = 0 \end{cases}$$

3D SW models:

$$\boldsymbol{r}_{3D}^{1} = \begin{cases} r_{1,3D}^{mx} (\boldsymbol{s}_{3D}(t^{n+1})) = 0\\ r_{1,3D}^{my} (\boldsymbol{s}_{3D}(t^{n+1})) = 0\\ r_{1,3D}^{c} (\boldsymbol{s}_{3D}(t^{n+1})) = 0 \end{cases}$$
$$\boldsymbol{r}_{3D}^{2} = \begin{cases} r_{2,3D}^{mx} (\boldsymbol{s}_{3D}(t^{n+1})) = 0\\ r_{2,3D}^{my} (\boldsymbol{s}_{3D}(t^{n+1})) = 0\\ r_{2,3D}^{c} (\boldsymbol{s}_{3D}(t^{n+1})) = 0 \end{cases}$$
$$\vdots$$
$$r_{N,3D}^{c} (\boldsymbol{s}_{3D}(t^{n+1})) = 0 \end{cases}$$

where

$$\boldsymbol{s}_{2D} = \{ \bar{u}_1, \bar{v}_1, h_1, \dots, \bar{u}_N, \bar{v}_N, h_N \}^T$$

$$\mathbf{s}_{3D} = \{u_1, v_1, d_1, \dots, u_N, v_N, d_N\}^T$$

Friday, April 8, 2016

(7)

AdH: Final equations

Nonlinear equations in vector form for both 2D and 3D models can be written as (8)

$$\boldsymbol{R}(\boldsymbol{s}_{n+1}) = \boldsymbol{0} \tag{8}$$

Newton-Raphson iterations (9) are set up to solve (8)

$$\left(\frac{\partial \mathbf{R}}{\partial \mathbf{s}_{n+1}} \right)^{(i)} \Delta \mathbf{s}_{n+1}^{(i+1)} = -\mathbf{R} \left(\mathbf{s}_{n+1}^{(i)} \right)$$

$$\mathbf{s}_{n+1}^{(i+1)} = \mathbf{s}_{n+1}^{(i)} + \Delta \mathbf{s}_{n+1}^{(i+1)}$$
(9)

AdH: Final equations

Newton-Raphson iterations (9) for 2D SW models, for example, look like (10)

$\left[\frac{\partial r_1^{mx}}{\partial \bar{u}_1}\right]$	$\frac{\partial r_1^{mx}}{\partial \bar{v}_1}$	$\frac{\partial r_1^{mx}}{\partial h_1}$	$rac{\partial r_1^{mx}}{\partial ar u_2}$	$\frac{\partial r_1^{mx}}{\partial \bar{v}_2}$	$rac{\partial r_1^{mx}}{\partial h_2}$	•••	$\frac{\partial r_1^{mx}}{\partial h_N}$	(i)	
$\frac{\partial r_1^{\bar{my}}}{\partial \bar{u}_1}$	$\frac{\partial r_1^{\bar{my}}}{\partial \bar{v}_1}$	$\frac{\partial r_1^{my}}{\partial h_1}$	$\frac{\partial r_1^{\bar{my}}}{\partial \bar{u}_2}$	$\frac{\partial r_1^{\bar{my}}}{\partial \bar{v}_2}$	-	•••	$\frac{\partial r_1^{my}}{\partial h_N}$	$(\Delta \bar{u}_1)^{(i+1)}$	$ \begin{pmatrix} \Delta \bar{u}_1 \\ \Delta \bar{v}_1 \\ \Delta h_1 \end{pmatrix}^{(i+1)} \begin{pmatrix} r_1^{mx} \left(\boldsymbol{s}_{n+1}^{(i)} \right) \\ r_1^{my} \left(\boldsymbol{s}_{n+1}^{(i)} \right) \\ r_1^c \left(\boldsymbol{s}_{n+1}^{(i)} \right) \end{pmatrix} $
$rac{\partial r_1^{c}}{\partial ar u_1}$	$rac{\partial r_1^{ar c}}{\partial ar v_1}$	$rac{\partial r_1^{c}}{\partial h_1}$	$rac{\partial r_1^{\overline{c}}}{\partial \overline{u}_2}$	_		•••	$rac{\partial r_1^c}{\partial h_N}$	$\begin{bmatrix} -\omega_1 \\ \Delta \bar{v}_1 \\ \Delta h_1 \end{bmatrix}$	
$\frac{\partial r_2^{mx}}{\partial \bar{u}_1}$	$\frac{\partial r_2^{mx}}{\partial \bar{v}_1}$					•••	$\frac{\partial r_2^{mx}}{\partial h_N}$	$ \left\{ \begin{array}{c} \Delta \bar{u}_2 \\ \Delta \bar{v}_2 \\ \cdot \end{array} \right\} = - \left\{ \begin{array}{c} = - \left\{ \begin{array}{c} \Delta \bar{v}_2 \\ \cdot \end{array} \right\} \right\} $	$\left. \begin{array}{c} r_2^{mx} \left(\mathbf{s}_{n+1}^{(i)} \right) \\ my \left(\begin{array}{c} (i) \\ \end{array} \right) \end{array} \right\}$
$\frac{\partial r_2^{my}}{\partial \bar{u}_1}$						•••	$\frac{\partial r_2^{my}}{\partial h_N}$	$\begin{pmatrix} : \\ \Delta h_N \end{pmatrix}$	$r_2^{noy}\left(\boldsymbol{s}_{n+1}^{(0)}\right)$
$ert \ \partial r_N^c$	$\vdots \ \partial r_N^c$	\vdots ∂r_N^c	\vdots ∂r_N^c	$\vdots \ \partial r_N^c$	\vdots ∂r_N^c	•	$\vdots \\ \partial r_N^c$		$\left(r_{N}^{c}\left(\boldsymbol{s}_{n+1}^{(i)}\right)\right)$
$\partial \overline{u}_1$	$\overline{\partial \bar{v}_1}$	∂h_1	$\partial \overline{u}_2$	$\overline{\partial \bar{v}_2}$	∂h_2	•••	$\overline{\partial h_N}$		

(Iteration index 'i' and time step number 'n' dropped hereafter)

(10)

Notation

\mathcal{N}^{2D}	Set of all nodes in the 2D model
\mathcal{I}^{2D}	Set of all nodes in the 2D model that lie on the 2D-3D interface
R _{2D}	Global residual vector of the 2D domain
$\boldsymbol{r}_{2D}^{i} = \left\{ r_{i,2D}^{mx}, r_{i,2D}^{my}, r_{i,2D}^{c} \right\}^{T}$	Nonlinear residual vector at node i of the 2D domain
$\boldsymbol{s}_{2D}^{i} = \{ \bar{u}_i, \bar{v}_i, h_i \}^T$	Solution vector at node <i>i</i> of the 2D domain
\mathcal{N}^{3D}	Set of all nodes in the 3D model
\mathcal{I}^{3D}	Set of all nodes in the 3D model that lie on the 2D-3D interface
R _{3D}	Global residual vector of the 3D domain
$\boldsymbol{r}_{3D}^{i} = \left\{ r_{i,3D}^{mx}, r_{i,3D}^{my}, r_{i,3D}^{c} \right\}^{T}$	Nonlinear residual vector at node i of the 3D domain
$\boldsymbol{s}_{3D}^{i} = \{u_{i}, v_{i}, d_{i}\}^{T}$	Solution vector at node i of the 3D domain

Notation

$$\begin{split} \boldsymbol{R} &= \left\{ \boldsymbol{R}^{\mathcal{N}^{2D} - \mathcal{I}^{2D}}, \boldsymbol{R}^{\mathcal{N}^{3D} - \mathcal{I}^{3D}}, \boldsymbol{R}^{\mathcal{I}^{2D}}, \boldsymbol{R}^{\mathcal{I}^{3D}} \right\}^{T} \\ \boldsymbol{s} &= \left\{ \boldsymbol{s}_{2D}^{\mathcal{N}^{2D} - \mathcal{I}^{2D}}, \boldsymbol{s}_{3D}^{\mathcal{N}^{3D} - \mathcal{I}^{3D}}, \boldsymbol{s}_{2D}^{\mathcal{I}^{2D}}, \boldsymbol{s}_{3D}^{\mathcal{I}^{3D}} \right\}^{T} \\ \boldsymbol{r}_{i} &= \left\{ \boldsymbol{r}_{i}^{mx}, \boldsymbol{r}_{i}^{my}, \boldsymbol{r}_{i}^{c} \right\}^{T} \\ \boldsymbol{s}^{i} &= \left\{ \boldsymbol{s}_{2D}^{i}, \text{ if } i \in \mathcal{N}^{2D} \\ \boldsymbol{s}_{3D}^{i}, \text{ if } i \in \mathcal{N}^{3D} \right\} \end{split}$$

 \boldsymbol{c}_i $\boldsymbol{C} = \{\boldsymbol{c}_i\}^T$

 ${\mathcal K}$

 $\mathcal{C}(\mathcal{K})$

(Rearranged) global residual vector of the coupled domain

(Rearranged) global solution vector of the coupled domain

New residual vector at node *i* of the coupled domain

Solution vector at node *i* of the coupled domain

Linear constraint applied at node *i* of the 3D interface Constraint vector for all nodes on the 3D interface

A node on the 2D model interface

The column (set) of 3D model interface nodes that ${\mathcal K}$ is coupled to

Example

Primary set definitions:

 $\mathcal{N}^{2D} = \{All \text{ nodes in } 2D \text{ model}\}\$ $\mathcal{N}^{3D} = \{All \text{ nodes in } 3D \text{ model}\}$

Separate Interface Nodes:

 $\begin{aligned} \mathcal{I}^{2D} &= \{1_{2D}, 2_{2D}, 3_{2D}\} \\ \mathcal{I}^{3D} &= \{1_{3D}, 2_{3D}, 3_{3D}, 4, \dots, 9\} \end{aligned}$

Node Columns:

 $\begin{array}{l} \mathcal{C}(\mathcal{K} = 1_{2D}) = \{1_{3D}, 2_{3D}, 3_{3D}\} \\ \mathcal{C}(\mathcal{K} = 2_{2D}) = \{4, 5, 6\} \\ \mathcal{C}(\mathcal{K} = 3_{2D}) = \{7, 8, 9\} \end{array}$

Coupling: Old system

Newton iterations (9) for the combined, reordered (non-coupled) 2D-3D system are given by (11)

Coupling: New residuals

Define the 'new,' coupled residuals using (12)

$$\boldsymbol{R} \ni \boldsymbol{r}^{j} = \begin{cases} \boldsymbol{r}_{2D}^{j} & \forall j \in \mathcal{N}^{2D} - \mathcal{I}^{2D} \\ \boldsymbol{r}_{3D}^{j} & \forall j \in \mathcal{N}^{3D} - \mathcal{I}^{3D} \\ \boldsymbol{r}_{2D}^{j} + \sum_{i \in \mathcal{C}(j)} \boldsymbol{r}_{3D}^{i} & \forall j \in \mathcal{I}^{2D} \\ \boldsymbol{s}_{3D}^{j} - \boldsymbol{s}_{2D}^{\mathcal{H}} & \forall j \in \mathcal{I}^{3D}, where \exists ! \mathcal{K} \in \mathcal{I}^{2D} : j \in \mathcal{C}(\mathcal{K}) \end{cases}$$
(12)

In vector form, (12) can be informally rewritten as (13)

(Note: Σ^* is not a function, just notation)

$$\boldsymbol{R}^{\mathcal{N}^{2D} - \mathcal{I}^{2D}} = \boldsymbol{R}_{2D}^{\mathcal{N}^{2D} - \mathcal{I}^{2D}}$$

$$\boldsymbol{R}^{\mathcal{N}^{3D} - \mathcal{I}^{3D}} = \boldsymbol{R}_{3D}^{\mathcal{N}^{3D} - \mathcal{I}^{3D}}$$

$$\boldsymbol{R}^{\mathcal{I}^{2D}} = \boldsymbol{R}_{2D}^{\mathcal{I}^{2D}} + \boldsymbol{\Sigma}^{*} \left(\boldsymbol{R}_{3D}^{\mathcal{I}^{3D}} \right)$$

$$\boldsymbol{R}^{\mathcal{I}^{3D}} = \boldsymbol{C}$$
(13)

Coupling: New Jacobian

Derivatives for new residuals (12) at the 2D interface nodes are given by (14)

$$\frac{\partial \boldsymbol{r}^{\mathcal{K}}}{\partial \boldsymbol{s}} = \frac{\partial \boldsymbol{r}_{2D}^{\mathcal{K}}}{\partial \boldsymbol{s}} + \sum_{\boldsymbol{j} \in \mathcal{C}(\mathcal{K}) \subset \mathcal{I}^{3D}} \frac{\partial \boldsymbol{r}_{3D}^{\boldsymbol{j}}}{\partial \boldsymbol{s}} \qquad \forall \mathcal{K} \in \mathcal{I}^{2D}$$
(14)

Eq. (14) can be reinterpreted as (15) for programming purposes

$$\frac{Block row (\mathcal{K})}{(New Jacobian)} = \frac{Block row (\mathcal{K})}{(Old Jacobian)} + \sum_{j \in \mathcal{C}(\mathcal{K})} \frac{Block row (j)}{(Old Jacobian)} \quad \forall \mathcal{K} \in \mathcal{I}^{2D}$$
(15)

Coupling: New Jacobian

Derivatives for new residuals (12) at the 3D interface nodes are given by (16)

$$\frac{\partial \boldsymbol{r}^{j}}{\partial \boldsymbol{s}^{i}} = \frac{\partial \boldsymbol{s}_{3D}^{j}}{\partial \boldsymbol{s}^{i}} - \frac{\partial \boldsymbol{s}_{2D}^{\mathcal{K}}}{\partial \boldsymbol{s}^{i}} = \begin{cases} +[I], & \text{if } i = j \\ -[I], & \text{if } i = \mathcal{K} \\ [0], & \text{otherwise} \end{cases} \qquad \forall j \in \mathcal{I}^{3D}, \text{where} \\ \exists ! \, \mathcal{K} \in \mathcal{I}^{2D} : j \in \mathcal{C}(\mathcal{K}) \end{cases}$$
(16)

Eq. (16) can be reinterpreted as (17) for programming purposes

$$\begin{array}{l} \text{New Jacobian Block}[j][j] &= +[I] \\ \text{New Jacobian Block}[j][\mathcal{K}] &= -[I] \\ \text{New Jacobian Block}[j][i] &= [0] \end{array} \end{array} \begin{array}{l} \forall j \in \mathcal{I}^{3D}, \text{where} \\ \exists ! \, \mathcal{K} \in \mathcal{I}^{2D} : j \in \mathcal{C}(\mathcal{K}) \\ \text{and } i \neq j, \mathcal{K} \end{array}$$

$$\begin{array}{l} (17) \\ \text{and } i \neq j, \mathcal{K} \end{array}$$

Coupling: New system

Use the new residuals (12), and derivatives (14) and (16), to modify the non-coupled system (11), to get the coupled system (18)

Solve (20) and update the solution vector

Check if nonlinear equations (8) are satisfied within user-defined tolerance

- If YES, then increment time step
- If NO, perform the next Newton-Raphson iteration

Example

Primary set definitions:

 $\mathcal{N}^{2D} = \{All \text{ nodes in } 2D \text{ model}\}\$ $\mathcal{N}^{3D} = \{All \text{ nodes in } 3D \text{ model}\}$

Separate Interface Nodes:

 $\begin{aligned} \mathcal{I}^{2D} &= \{1_{2D}, 2_{2D}, 3_{2D}\} \\ \mathcal{I}^{3D} &= \{1_{3D}, 2_{3D}, 3_{3D}, 4, \dots, 9\} \end{aligned}$

Node Columns:

 $\begin{array}{l} \mathcal{C}(\mathcal{K} = 1_{2D}) = \{1_{3D}, 2_{3D}, 3_{3D}\} \\ \mathcal{C}(\mathcal{K} = 2_{2D}) = \{4, 5, 6\} \\ \mathcal{C}(\mathcal{K} = 3_{2D}) = \{7, 8, 9\} \end{array}$

Coupling: Old system

Build the 'old' system of equations (19), as defined in (11)

 $\partial \boldsymbol{R}_{2D}^{\mathcal{N}^{2D}-\mathcal{I}^{2D}}$ $\partial \boldsymbol{R}_{2D}^{\mathcal{N}^{2D}-\mathcal{I}^{2D}}$ [0] [0] $\partial s_{2D}^{\mathcal{N}^{2D}-\mathcal{I}^{2D}}$ $\partial s_{2D}^{\mathcal{I}^{2D}}$ $\partial \boldsymbol{R}_{3D}^{\mathcal{N}^{3D}-\mathcal{I}^{3D}}$ $\partial \mathbf{R}_{3D}^{\mathcal{N}^{3D}-\mathcal{I}^{3D}}$ [0] [0] $\partial s_{3D}^{\mathcal{N}^{3D}-\mathcal{I}^{3D}}$ $\partial s_{3D}^{\mathcal{I}^{3D}}$ $(\boldsymbol{R}_{2D}^{\mathcal{N}^{2D}-\mathcal{I}^{2D}}(\boldsymbol{s}_{2D}))$ ∂r_{2D}^1 $rac{\partial \boldsymbol{r}_{2D}^1}{\partial \boldsymbol{s}_{2D}^3}$ $\partial r_{\scriptscriptstyle 2D}^1$ $\partial r_{\scriptscriptstyle 2D}^1$ $\boldsymbol{R}_{3D}^{\mathcal{N}^{3D}-\mathcal{I}^{3D}}(\boldsymbol{s}_{3D})$ $\partial s_{2D}^{\mathcal{N}^{2D}-\mathcal{I}^{2D}}$ ∂s_{2D}^2 ∂s_{2D}^1 $(\Delta s_{2D}^{\mathcal{N}^{2D}-\mathcal{I}^{2D}})$ $\Delta s_{3D}^{\mathcal{N}^{3D}-\mathcal{I}^{3D}}$ $(\boldsymbol{r}_{2D}^1(\boldsymbol{s}_{2D}))$ $\frac{\partial \boldsymbol{r}_{2D}^2}{\partial \boldsymbol{s}_{2D}^3}$ ∂r_{2D}^2 ∂r^2_{2D} ∂r_{2D}^2 $r_{2D}^2(\boldsymbol{s}_{2D})$ [0] [0] $\partial s_{2D}^{\mathcal{N}^{2D}-\mathcal{I}^{2D}}$ ∂s_{2D}^2 ∂s_{2D}^1 $\Delta \boldsymbol{s}_{2D}^{\mathcal{I}^{2D}}$ $r_{2D}^3(\boldsymbol{s}_{2D})$ $\frac{\partial r_{2D}^3}{\partial s_{2D}^3}$ $\frac{\partial \boldsymbol{r}_{2D}^3}{\partial \boldsymbol{s}_{2D}^2}$ ∂r_{2D}^3 ∂r_{2D}^3 $\Delta s_{3D}^{\mathcal{I}^{3D}}$ $(\boldsymbol{r}_{3D}^1(\boldsymbol{s}_{3D}))$ ∂s_{2D}^1 $\partial s_{2D}^{\mathcal{N}^{2D}-\mathcal{I}^{2D}}$ $r_{3D}^9(\boldsymbol{s}_{3\Gamma})$ ∂r_{3D}^1 ∂r_{3D}^1 ∂r_{3D}^1 $\partial s_{3D}^{\mathcal{N}^{3D}-j^{3D}}$ ∂s_{3D}^1 ∂s_{3D}^9 $\frac{\partial r_{3D}^9}{\partial s_{3D}^1}$ [0] [0] ъ. ∂r_{3D}^9 ∂r_{3D}^9 $\partial s_{3D}^{\mathcal{N}^{3D}}$ ∂s_{3D}^9 _13D

(19)

Coupling: New residuals

Build the new residuals (20) using the old residuals and constraints, as per (12) and (13)

$$R^{\mathcal{N}^{2D}-\mathcal{I}^{2D}} = R^{\mathcal{N}^{2D}-\mathcal{I}^{2D}}_{2D}$$

$$R^{\mathcal{N}^{3D}-\mathcal{I}^{3D}} = R^{\mathcal{N}^{3D}-\mathcal{I}^{3D}}_{3D}$$

$$R^{\mathcal{I}^{2D}} = \begin{cases} r^{1} = r^{1}_{2D} + \sum_{i \in \mathcal{C}(1)} r^{i}_{3D} = r^{1}_{2D} + r^{1}_{3D} + r^{2}_{3D} + r^{3}_{3D} \\ r^{2} = r^{2}_{2D} + \sum_{i \in \mathcal{C}(2)} r^{i}_{3D} = r^{2}_{2D} + r^{4}_{3D} + r^{5}_{3D} + r^{6}_{3D} \\ r^{3} = r^{3}_{2D} + \sum_{i \in \mathcal{C}(3)} r^{i}_{3D} = r^{2}_{2D} + r^{3}_{3D} + r^{3}_{3D} + r^{9}_{3D} \\ r^{3} = r^{3}_{2D} + \sum_{i \in \mathcal{C}(3)} r^{i}_{3D} = r^{3}_{2D} + r^{7}_{3D} + r^{8}_{3D} + r^{9}_{3D} \\ \end{cases}$$

$$R^{\mathcal{I}^{3D}} = C = \begin{cases} c^{1} = s^{1}_{3D} - s^{1}_{2D} \\ c^{2} = s^{2}_{3D} - s^{1}_{2D} \\ c^{2} = s^{2}_{3D} - s^{1}_{2D} \\ c^{3} = s^{3}_{3D} - s^{2}_{2D} \\ c^{5} = s^{5}_{3D} - s^{2}_{2D} \\ c^{6} = s^{6}_{3D} - s^{2}_{2D} \\ c^{6} = s^{6}_{3D} - s^{2}_{2D} \\ c^{7} = s^{7}_{3D} - s^{3}_{2D} \\ c^{8} = s^{8}_{3D} - s^{3}_{2D} \\ c^{9} = s^{9}_{3D} - s^{3}_{2D} \\ \end{cases}$$

(20)

Coupling: New Jacobian

Build the modified Jacobian (21) for the Newton-Raphson iterations (9) using the modified residuals (20) and the derivatives (14) and (16)

(21)

Coupling: New Jacobian

Expanding terms in the new Jacobian (21), making use of (15) and (17), we get (22)

Coupling: New system

The Newton-Raphson iterations (9) for the coupled system are given by (23), where we have used the coupled Jacobian (22) and coupled residuals (20)

(23)

Discussion

Conservation of quantities at the 2D-3D interface

- Enforced continuity of water surface elevation
- Enforced continuity of depth averaged velocity

Solvability of the coupled 2D-3D system

- Started with the individual (non-coupled) models, solvable upon application of boundary conditions at the interface
- New 2D interface residuals obtained by summing up linearly independent interface residuals
- New 3D interface residuals set to be linearly independent constraints

Bathymetry fixed in time

• Not applicable for sediment transport, for example

Transport of constituents in the coupled 2D-3D model

• Nearly identical treatment, 1 equation per node, per constituent, instead of 3 equations per node for SW

Continuity equation and different solution variables need separate treatment

Acknowledgments

This project was funded by the US Army Corps of Engineers, project PP-EQM-KY07-001-P3, under the Department of Defense (DOD) High Performance Computing Modernization Program (HPCMP), contract No. GS04T09DBC0017.

We acknowledge the following people for their contributions to this work:

- Dr. Clint Dawson (Professor, The University of Texas at Austin)
- Dr. Corey Trahan (Research Physicist, US Army Corps of Engineers)
- Dr. Matthew Farthing (Research Hydraulic Engineer, US Army Corps of Engineers)
- Dr. Charlie Berger (Research Hydraulic Engineer, US Army Corps of Engineers)

References

[1] C. B. Vreugdenhil, Numerical methods for shallow-water flow, Springer Science & Business Media, 2013.

[2] A. N. Brooks and T. J. Hughes, "Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations," *Computer methods in applied mechanics and engineering*, vol. 32, no. 1, pp. 199-259, 1982.

[3] C. J. Trahan, G. Savant and R. C. Berger, "Streamline Upwind Petrov-Galerkin stabilization in the Adaptive Hydraulics shallow water models," ERDC/CHL, 2016.

[4] R. C. Berger and M. W. Farthing, "Adaptive Hydraulics: 3D Shallow Water Model, Equation Development," ERDC/CHL, 2014.

Questions?

Thank You!