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Introduction
Adaptive Hydraulics (AdH): (US Army Corps of Engineers)

◦ 2D and 3D shallow water (SW) equations

◦ 3D Navier-Stokes equations

◦ Barotropic/baroclinic transport of constituents (salinity, temperature, sediments, etc.)

◦ Spatiotemporal adaptivity
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Objective

“To algebraically couple 2D and 3D shallow water models in AdH, in a conservative manner”
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Solution method
Spatial discretization of PDE’s to generate nonlinear ODE’s in time

◦ Streamline upwind Petrov-Galerkin (SUPG) method

Temporal discretization of nonlinear ODE’s to generate a system of nonlinear equations
◦ Up to second order implicit finite difference method

Nonlinear equations solved using Newton-Raphson iterative method
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AdH: 2D SW models
Equations after applying SUPG

◦ Depth integrated continuity equation (1)

(1)

◦ Depth integrated horizontal momentum equations (2) and (3)

(2)

(3)
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𝑒

 

Ω𝑒
2𝐷

𝜙𝑖
𝜕ℎ

𝜕𝑡
− 𝛻2𝐷𝜙𝑖 ∙  𝒗ℎ 𝑑Ω𝑒

2𝐷

𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑡𝑒𝑟𝑚𝑠 𝐼𝐵𝑃

+  

𝜕Ω𝑒
1𝐷

𝜙𝑖  𝒗ℎ ∙ 𝒏 𝑑𝜕Ω𝑒
1𝐷

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑡𝑒𝑟𝑚𝑠 𝑚𝑎𝑠𝑠 𝑓𝑙𝑢𝑥

+   𝑃𝑒
𝑐

𝑆𝑈𝑃𝐺 𝑡𝑒𝑟𝑚𝑠

= 0

 

𝑒

 

Ω𝑒
2𝐷

𝜙𝑖
𝜕  𝑢ℎ

𝜕𝑡
−
𝜕𝜙𝑖
𝜕𝑥

 𝑢 𝑢ℎ +
𝑔ℎ2

2
−
ℎ𝜎𝑥𝑥
𝜌

−
𝜕𝜙𝑖
𝜕𝑦

 𝑢  𝑣ℎ −
ℎ𝜎𝑥𝑦

𝜌
𝑑Ω𝑒

2𝐷

𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑡𝑒𝑟𝑚𝑠 𝐼𝐵𝑃

+  

𝜕Ω𝑒
1𝐷

𝜙𝑖𝑛𝑥  𝑢 𝑢ℎ +
𝑔ℎ2

2
−
ℎ𝜎𝑥𝑥
𝜌

+ 𝜙𝑖𝑛𝑦  𝑢  𝑣ℎ −
ℎ𝜎𝑥𝑦

𝜌
𝑑𝜕Ω𝑒

1𝐷

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑡𝑒𝑟𝑚𝑠 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑓𝑙𝑢𝑥

+   𝑃𝑒
𝑚𝑥

𝑆𝑈𝑃𝐺 𝑡𝑒𝑟𝑚𝑠

= 0

 

𝑒

 

Ω𝑒
2𝐷

𝜙𝑖
𝜕  𝑣ℎ

𝜕𝑡
−
𝜕𝜙𝑖
𝜕𝑥

 𝑣  𝑢ℎ −
ℎ𝜎𝑦𝑥

𝜌
−
𝜕𝜙𝑖
𝜕𝑦

 𝑣  𝑣ℎ +
𝑔ℎ2

2
−
ℎ𝜎𝑦𝑦

𝜌
𝑑Ω𝑒

2𝐷

𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑡𝑒𝑟𝑚𝑠 𝐼𝐵𝑃

+  

𝜕Ω𝑒
1𝐷

𝜙𝑖𝑛𝑥  𝑣  𝑢ℎ −
ℎ𝜎𝑦𝑥

𝜌
+ 𝜙𝑖𝑛𝑦  𝑣  𝑣ℎ +

𝑔ℎ2

2
−
ℎ𝜎𝑦𝑦

𝜌
𝑑𝜕Ω𝑒

1𝐷

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑡𝑒𝑟𝑚𝑠 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑓𝑙𝑢𝑥

+   𝑃𝑒
𝑚𝑦

𝑆𝑈𝑃𝐺 𝑡𝑒𝑟𝑚𝑠

= 0



AdH: 3D SW models
Equations after applying SUPG

◦ Depth summed continuity equation (4)

(4)
◦ Horizontal momentum equations (5) and (6)

(5)

(6)
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𝑖∈𝒞 𝐼

 

𝑒

 

Ω𝑒
3𝐷

−𝛻𝜙𝑖 ∙ 𝒗 𝑑Ω𝑒
3𝐷

𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑡𝑒𝑟𝑚𝑠 𝐼𝐵𝑃

+ 

𝑒

 

𝜕Ω𝑒,𝑠
2𝐷

𝜙𝑖
𝜕𝜂

𝜕𝑡
𝑛𝑧 𝑑𝜕Ω𝑒,𝑠

2𝐷

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑚𝑎𝑠𝑠 𝑓𝑙𝑢𝑥

+  

𝜕Ω𝑒,𝑏
2𝐷

𝜙𝑖
𝜕𝑏

𝜕𝑡
𝑛𝑧 𝑑𝜕Ω𝑒,𝑏

2𝐷

𝐵𝑒𝑑 𝑚𝑎𝑠𝑠 𝑓𝑙𝑢𝑥

+  

𝑖∈𝒞 𝐼

 

𝑒

 

𝜕Ω𝑒,𝑣
2𝐷

𝜙𝑖𝒗 ∙ 𝒏 𝑑𝜕Ω𝑒,𝑣
2𝐷

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑚𝑎𝑠𝑠 𝑓𝑙𝑢𝑥

+  

𝑖∈𝒞 𝐼

 

𝑒

 𝑃𝑒
𝑐

𝑆𝑈𝑃𝐺 𝑡𝑒𝑟𝑚𝑠

= 0

 

𝑒

𝜕

𝜕𝑡
 

Ω𝑒
3𝐷

𝜙𝑖𝑢 𝑑Ω𝑒
3𝐷

𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑡𝑒𝑟𝑚𝑠 𝐼𝐵𝑃

+  

Ω𝑒
3𝐷

−𝛻𝜙𝑖 ∙ 𝒗𝑟𝑢 − 𝜙𝑖𝑓𝑣 +
𝜕𝜙𝑖
𝜕𝑥

𝑃

𝜌0
+ 𝛻𝜙𝑖 ∙ 𝝉𝑥 𝑑Ω𝑒

3𝐷

𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑡𝑒𝑟𝑚𝑠 𝐼𝐵𝑃

+  

𝜕Ω𝑒,𝑣
2𝐷

𝜙𝑖𝒏 ∙ 𝒗𝑟𝑢 + 𝑛𝑥
𝑃

𝜌0
𝑑𝜕Ω𝑒,𝑣

2𝐷

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑓𝑙𝑢𝑥

−  

𝜕Ω𝑒,𝑤
2𝐷

𝜙𝑖 𝝉𝑥 ∙ 𝒏 𝑑𝜕Ω𝑒,𝑤
2𝐷

𝑆𝑖𝑑𝑒 𝑤𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑠𝑠

+  𝑃𝑒
𝑚𝑥

𝑆𝑈𝑃𝐺 𝑡𝑒𝑟𝑚𝑠

= 0

 

𝑒

𝜕

𝜕𝑡
 

Ω𝑒
3𝐷

𝜙𝑖𝑣 𝑑Ω𝑒
3𝐷

𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑡𝑒𝑟𝑚𝑠 𝐼𝐵𝑃

+  

Ω𝑒
3𝐷

−𝛻𝜙𝑖 ∙ 𝒗𝑟𝑣 + 𝜙𝑖𝑓𝑢 +
𝜕𝜙𝑖
𝜕𝑦

𝑃

𝜌0
+ 𝛻𝜙𝑖 ∙ 𝝉𝑦 𝑑Ω𝑒

3𝐷

𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑡𝑒𝑟𝑚𝑠 𝐼𝐵𝑃

+  

𝜕Ω𝑒,𝑣
2𝐷

𝜙𝑖𝒏 ∙ 𝒗𝑟𝑣 + 𝑛𝑦
𝑃

𝜌0
𝑑𝜕Ω𝑒,𝑣

2𝐷

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑓𝑙𝑢𝑥

−  

𝜕Ω𝑒,𝑤
2𝐷

𝜙𝑖 𝝉𝑦 ∙ 𝒏 𝑑𝜕Ω𝑒,𝑤
2𝐷

𝑆𝑖𝑑𝑒 𝑤𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑠𝑠

+  𝑃𝑒
𝑚𝑦

𝑆𝑈𝑃𝐺 𝑡𝑒𝑟𝑚𝑠

= 0



AdH: Final equations
2D SW models:

where

3D SW models:

(7)

where
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𝒓2𝐷
1 =

𝑟1,2𝐷
𝑚𝑥 𝒔2𝐷 𝑡𝑛+1 = 0

𝑟1,2𝐷
𝑚𝑦

𝒔2𝐷 𝑡𝑛+1 = 0

𝑟1,2𝐷
𝑐 𝒔2𝐷 𝑡𝑛+1 = 0

𝒓2𝐷
2 =

𝑟2,2𝐷
𝑚𝑥 𝒔2𝐷 𝑡𝑛+1 = 0

𝑟2,2𝐷
𝑚𝑦

𝒔2𝐷 𝑡𝑛+1 = 0

𝑟2,2𝐷
𝑐 𝒔2𝐷 𝑡𝑛+1 = 0

⋮
𝑟𝑁,2𝐷
𝑐 𝒔2𝐷 𝑡𝑛+1 = 0

𝒔2𝐷 =  𝑢1,  𝑣1, ℎ1, … ,  𝑢𝑁,  𝑣𝑁, ℎ𝑁
𝑇

𝒓3𝐷
1 =

𝑟1,3𝐷
𝑚𝑥 𝒔3𝐷 𝑡𝑛+1 = 0

𝑟1,3𝐷
𝑚𝑦

𝒔3𝐷 𝑡𝑛+1 = 0

𝑟1,3𝐷
𝑐 𝒔3𝐷 𝑡𝑛+1 = 0

𝒓3𝐷
2 =

𝑟2,3𝐷
𝑚𝑥 𝒔3𝐷 𝑡𝑛+1 = 0

𝑟2,3𝐷
𝑚𝑦

𝒔3𝐷 𝑡𝑛+1 = 0

𝑟2,3𝐷
𝑐 𝒔3𝐷 𝑡𝑛+1 = 0

⋮
𝑟𝑁,3𝐷
𝑐 𝒔3𝐷 𝑡𝑛+1 = 0

𝒔3𝐷 = 𝑢1, 𝑣1, 𝑑1, … , 𝑢𝑁, 𝑣𝑁, 𝑑𝑁
𝑇



AdH: Final equations
Nonlinear equations in vector form for both 2D and 3D models can be written as (8)

(8)

Newton-Raphson iterations (9) are set up to solve (8)

(9)
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𝑹 𝒔𝑛+1 = 𝟎

𝜕𝑹

𝜕𝒔𝑛+1

𝑖

Δ𝒔𝑛+1
𝑖+1

= −𝑹 𝒔𝑛+1
𝑖

𝒔𝑛+1
𝑖+1

= 𝒔𝑛+1
𝑖

+ Δ𝒔𝑛+1
𝑖+1



AdH: Final equations
Newton-Raphson iterations (9) for 2D SW models, for example, look like (10)

(10)

(Iteration index ‘𝑖’ and time step number ‘𝑛’ dropped hereafter)
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𝜕𝑟1
𝑚𝑥

𝜕 𝑢1

𝜕𝑟1
𝑚𝑥

𝜕  𝑣1

𝜕𝑟1
𝑚𝑥

𝜕ℎ1

𝜕𝑟1
𝑚𝑥

𝜕 𝑢2

𝜕𝑟1
𝑚𝑥

𝜕  𝑣2

𝜕𝑟1
𝑚𝑥

𝜕ℎ2
⋯

𝜕𝑟1
𝑚𝑥

𝜕ℎ𝑁
𝜕𝑟1

𝑚𝑦

𝜕 𝑢1

𝜕𝑟1
𝑚𝑦

𝜕  𝑣1

𝜕𝑟1
𝑚𝑦

𝜕ℎ1

𝜕𝑟1
𝑚𝑦

𝜕 𝑢2

𝜕𝑟1
𝑚𝑦

𝜕  𝑣2
⋯

𝜕𝑟1
𝑚𝑦

𝜕ℎ𝑁
𝜕𝑟1

𝑐

𝜕 𝑢1

𝜕𝑟1
𝑐

𝜕  𝑣1

𝜕𝑟1
𝑐

𝜕ℎ1

𝜕𝑟1
𝑐

𝜕 𝑢2
⋯

𝜕𝑟1
𝑐

𝜕ℎ𝑁
𝜕𝑟2

𝑚𝑥

𝜕 𝑢1

𝜕𝑟2
𝑚𝑥

𝜕  𝑣1
⋯

𝜕𝑟2
𝑚𝑥

𝜕ℎ𝑁
𝜕𝑟2

𝑚𝑦

𝜕 𝑢1
⋯

𝜕𝑟2
𝑚𝑦

𝜕ℎ𝑁
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝜕𝑟𝑁
𝑐

𝜕 𝑢1

𝜕𝑟𝑁
𝑐

𝜕  𝑣1

𝜕𝑟𝑁
𝑐

𝜕ℎ1

𝜕𝑟𝑁
𝑐

𝜕 𝑢2

𝜕𝑟𝑁
𝑐

𝜕  𝑣2

𝜕𝑟𝑁
𝑐

𝜕ℎ2
⋯

𝜕𝑟𝑁
𝑐

𝜕ℎ𝑁

𝑖

Δ 𝑢1
Δ  𝑣1
Δℎ1
Δ 𝑢2
Δ  𝑣2
⋮

Δℎ𝑁

𝑖+1

= −

𝑟1
𝑚𝑥 𝒔𝑛+1

𝑖

𝑟1
𝑚𝑦

𝒔𝑛+1
𝑖

𝑟1
𝑐 𝒔𝑛+1

𝑖

𝑟2
𝑚𝑥 𝒔𝑛+1

𝑖

𝑟2
𝑚𝑦

𝒔𝑛+1
𝑖

⋮

𝑟𝑁
𝑐 𝒔𝑛+1

𝑖



Notation
𝒩2𝐷 Set of all nodes in the 2D model

ℐ2𝐷 Set of all nodes in the 2D model that lie on the 2D-3D interface

𝑹2𝐷 Global residual vector of the 2D domain

𝒓2𝐷
𝑖 = 𝑟𝑖,2𝐷

𝑚𝑥 , 𝑟𝑖,2𝐷
𝑚𝑦

, 𝑟𝑖,2𝐷
𝑐 𝑇

Nonlinear residual vector at node 𝑖 of the 2D domain

𝒔2𝐷
𝑖 =  𝑢𝑖 ,  𝑣𝑖 , ℎ𝑖

𝑇 Solution vector at node 𝑖 of the 2D domain

𝒩3𝐷 Set of all nodes in the 3D model

ℐ3𝐷 Set of all nodes in the 3D model that lie on the 2D-3D interface

𝑹3𝐷 Global residual vector of the 3D domain

𝒓3𝐷
𝑖 = 𝑟𝑖,3𝐷

𝑚𝑥 , 𝑟𝑖,3𝐷
𝑚𝑦

, 𝑟𝑖,3𝐷
𝑐 𝑇

Nonlinear residual vector at node 𝑖 of the 3D domain

𝒔3𝐷
𝑖 = 𝑢𝑖 , 𝑣𝑖 , 𝑑𝑖

𝑇 Solution vector at node 𝑖 of the 3D domain
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Notation
𝑹 = 𝑹𝒩2𝐷−ℐ2𝐷 , 𝑹𝒩3𝐷−ℐ3𝐷 , 𝑹ℐ2𝐷 , 𝑹ℐ3𝐷

𝑇
(Rearranged) global residual vector of the coupled domain

𝒔 = 𝒔2𝐷
𝒩2𝐷−ℐ2𝐷 , 𝒔3𝐷

𝒩3𝐷−ℐ3𝐷 , 𝒔2𝐷
ℐ2𝐷 , 𝒔3𝐷

ℐ3𝐷
𝑇

(Rearranged) global solution vector of the coupled domain

𝒓𝑖 = 𝑟𝑖
𝑚𝑥 , 𝑟𝑖

𝑚𝑦
, 𝑟𝑖

𝑐 𝑇
New residual vector at node 𝑖 of the coupled domain

𝒔𝑖 =  
𝒔2𝐷
𝑖 , 𝑖𝑓 𝑖 ∈ 𝒩2𝐷

𝒔3𝐷
𝑖 , 𝑖𝑓 𝑖 ∈ 𝒩3𝐷

Solution vector at node 𝑖 of the coupled domain

𝒄𝑖 Linear constraint applied at node 𝑖 of the 3D interface

𝑪 = 𝒄𝑖
𝑇 Constraint vector for all nodes on the 3D interface

𝒦 A node on the 2D model interface

𝒞 𝒦 The column (set) of 3D model interface nodes that 𝒦 is coupled to
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Example
Primary set definitions:
𝒩2𝐷 = 𝐴𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 2𝐷 𝑚𝑜𝑑𝑒𝑙
𝒩3𝐷 = 𝐴𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 3𝐷 𝑚𝑜𝑑𝑒𝑙

Separate Interface Nodes:
ℐ2𝐷 = 12𝐷 , 22𝐷 , 32𝐷
ℐ3𝐷 = 13𝐷 , 23𝐷 , 33𝐷 , 4, … , 9

Node Columns:
𝒞 𝒦 = 12𝐷 = 13𝐷 , 23𝐷 , 33𝐷
𝒞 𝒦 = 22𝐷 = 4, 5, 6
𝒞 𝒦 = 32𝐷 = 7, 8, 9
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Coupling: Old system
Newton iterations (9) for the combined, reordered  (non-coupled) 2D-3D system are given by (11)

(11)
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𝜕𝑹2𝐷
𝒩2𝐷−ℐ2𝐷

𝜕𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

0
𝜕𝑹2𝐷

𝒩2𝐷−ℐ2𝐷

𝜕𝒔2𝐷
ℐ2𝐷

0

0
𝜕𝑹3𝐷

𝒩3𝐷−ℐ3𝐷

𝜕𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

0
𝜕𝑹3𝐷

𝒩3𝐷−ℐ3𝐷

𝜕𝒔3𝐷
ℐ3𝐷

𝜕𝑹2𝐷
ℐ2𝐷

𝜕𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

0
𝜕𝑹2𝐷

ℐ2𝐷

𝜕𝒔2𝐷
ℐ2𝐷

0

0
𝜕𝑹3𝐷

ℐ3𝐷

𝜕𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

0
𝜕𝑹3𝐷

ℐ3𝐷

𝜕𝒔3𝐷
ℐ3𝐷

Δ𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

Δ𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

Δ𝒔2𝐷
ℐ2𝐷

Δ𝒔3𝐷
ℐ3𝐷

= −

𝑹2𝐷
𝒩2𝐷−ℐ2𝐷 𝒔2𝐷

𝑹3𝐷
𝒩3𝐷−ℐ3𝐷 𝒔3𝐷

𝑹2𝐷
ℐ2𝐷 𝒔2𝐷

𝑹3𝐷
ℐ3𝐷 𝒔3𝐷



Coupling: New residuals
Define the ‘new,’ coupled residuals using (12)

(12)

In vector form, (12) can be informally rewritten as (13)

(Note: Σ∗ is not a function, just notation)

(13)
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𝑹 ∋ 𝒓𝑗 =

𝒓2𝐷
𝑗

∀𝑗 ∈ 𝒩2𝐷 − ℐ2𝐷

𝒓3𝐷
𝑗

∀𝑗 ∈ 𝒩3𝐷 − ℐ3𝐷

𝒓2𝐷
𝑗

+  

𝑖∈𝒞 𝑗

𝒓3𝐷
𝑖 ∀𝑗 ∈ ℐ2𝐷

𝒔3𝐷
𝑗

− 𝒔2𝐷
𝒦 ∀𝑗 ∈ ℐ3𝐷 , 𝑤ℎ𝑒𝑟𝑒 ∃!𝒦 ∈ ℐ2𝐷: 𝑗 ∈ 𝒞 𝒦

𝑹𝒩2𝐷−ℐ2𝐷 = 𝑹2𝐷
𝒩2𝐷−ℐ2𝐷

𝑹𝒩3𝐷−ℐ3𝐷 = 𝑹3𝐷
𝒩3𝐷−ℐ3𝐷

𝑹ℐ2𝐷= 𝑹2𝐷
ℐ2𝐷 + Σ∗ 𝑹3𝐷

ℐ3𝐷

𝑹ℐ3𝐷 = 𝑪



Coupling: New Jacobian
Derivatives for new residuals (12) at the 2D interface nodes are given by (14)

(14)

Eq. (14) can be reinterpreted as (15) for programming purposes

(15)
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𝐵𝑙𝑜𝑐𝑘 𝑟𝑜𝑤 𝒦
𝑁𝑒𝑤 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛

=
𝐵𝑙𝑜𝑐𝑘 𝑟𝑜𝑤 𝒦
𝑂𝑙𝑑 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛

+ 

𝑗∈𝒞 𝒦

𝐵𝑙𝑜𝑐𝑘 𝑟𝑜𝑤 𝑗

𝑂𝑙𝑑 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛
∀𝒦 ∈ ℐ2𝐷

𝜕𝒓𝒦

𝜕𝒔
=
𝜕𝒓2𝐷

𝒦

𝜕𝒔
+  

𝑗∈𝒞 𝒦 ⊂ℐ3𝐷

𝜕𝒓3𝐷
𝑗

𝜕𝒔
∀𝒦 ∈ ℐ2𝐷



Coupling: New Jacobian
Derivatives for new residuals (12) at the 3D interface nodes are given by (16)

(16)

Eq. (16) can be reinterpreted as (17) for programming purposes

(17)
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𝑁𝑒𝑤 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 𝐵𝑙𝑜𝑐𝑘 𝑗 𝑗 = +[𝐼]

𝑁𝑒𝑤 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 𝐵𝑙𝑜𝑐𝑘 𝑗 𝒦 = − 𝐼

𝑁𝑒𝑤 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 𝐵𝑙𝑜𝑐𝑘 𝑗 𝑖 = 0

∀𝑗 ∈ ℐ3𝐷 , 𝑤ℎ𝑒𝑟𝑒

∃!𝒦 ∈ ℐ2𝐷: 𝑗 ∈ 𝒞 𝒦
𝑎𝑛𝑑 𝑖 ≠ 𝑗,𝒦

𝜕𝒓𝑗

𝜕𝒔𝑖
=
𝜕𝒔3𝐷

𝑗

𝜕𝒔𝑖
−
𝜕𝒔2𝐷

𝒦

𝜕𝒔𝑖
=  

+ 𝐼 , 𝑖𝑓 𝑖 = 𝑗

− 𝐼 , 𝑖𝑓 𝑖 = 𝒦

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

∀𝑗 ∈ ℐ3𝐷 , 𝑤ℎ𝑒𝑟𝑒

∃!𝒦 ∈ ℐ2𝐷: 𝑗 ∈ 𝒞 𝒦



Coupling: New system
Use the new residuals (12), and derivatives (14) and (16), to modify the non-coupled system (11), to get the coupled 
system (18)

(18)

Solve (20) and update the solution vector

Check if nonlinear equations (8) are satisfied within user-defined tolerance
◦ If YES, then increment time step

◦ If NO, perform the next Newton-Raphson iteration
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𝜕𝑹2𝐷
𝒩2𝐷−ℐ2𝐷

𝜕𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

0
𝜕𝑹2𝐷

𝒩2𝐷−ℐ2𝐷

𝜕𝒔2𝐷
ℐ2𝐷

0

0
𝜕𝑹3𝐷

𝒩3𝐷−ℐ3𝐷

𝜕𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

0
𝜕𝑹3𝐷

𝒩3𝐷−ℐ3𝐷

𝜕𝒔3𝐷
ℐ3𝐷

𝜕𝑹2𝐷
ℐ2𝐷

𝜕𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

𝜕∑∗ 𝑹3𝐷
ℐ3𝐷

𝜕𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

𝜕𝑹2𝐷
ℐ2𝐷

𝜕𝒔2𝐷
ℐ2𝐷

𝜕∑∗ 𝑹3𝐷
ℐ3𝐷

𝜕𝒔3𝐷
ℐ3𝐷

0 0
𝜕𝑪

𝜕𝒔2𝐷
ℐ2𝐷

𝜕𝑪

𝜕𝒔3𝐷
ℐ3𝐷

Δ𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

Δ𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

Δ𝒔2𝐷
ℐ2𝐷

Δ𝒔3𝐷
ℐ3𝐷

= −

𝑹2𝐷
𝒩2𝐷−ℐ2𝐷 𝒔2𝐷

𝑹3𝐷
𝒩3𝐷−ℐ3𝐷 𝒔3𝐷

𝑹2𝐷
ℐ2𝐷 𝒔2𝐷 + Σ∗ 𝑹3𝐷

ℐ3𝐷 𝒔3𝐷

𝑪 𝒔2𝐷
ℐ2𝐷 , 𝒔3𝐷

ℐ3𝐷



Example
Primary set definitions:
𝒩2𝐷 = 𝐴𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 2𝐷 𝑚𝑜𝑑𝑒𝑙
𝒩3𝐷 = 𝐴𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 3𝐷 𝑚𝑜𝑑𝑒𝑙

Separate Interface Nodes:
ℐ2𝐷 = 12𝐷 , 22𝐷 , 32𝐷
ℐ3𝐷 = 13𝐷 , 23𝐷 , 33𝐷 , 4, … , 9

Node Columns:
𝒞 𝒦 = 12𝐷 = 13𝐷 , 23𝐷 , 33𝐷
𝒞 𝒦 = 22𝐷 = 4, 5, 6
𝒞 𝒦 = 32𝐷 = 7, 8, 9
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Coupling: Old system
Build the ‘old’ system of equations (19), as defined in (11)

(19)
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𝜕𝑹2𝐷
𝒩2𝐷−ℐ2𝐷

𝜕𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

0
𝜕𝑹2𝐷

𝒩2𝐷−ℐ2𝐷

𝜕𝒔2𝐷
ℐ2𝐷

0

0
𝜕𝑹3𝐷

𝒩3𝐷−ℐ3𝐷

𝜕𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

0
𝜕𝑹3𝐷

𝒩3𝐷−ℐ3𝐷

𝜕𝒔3𝐷
ℐ3𝐷

𝜕𝒓2𝐷
1

𝜕𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

𝜕𝒓2𝐷
2

𝜕𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

𝜕𝒓2𝐷
3

𝜕𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

0

𝜕𝒓2𝐷
1

𝜕𝒔2𝐷
1

𝜕𝒓2𝐷
1

𝜕𝒔2𝐷
2

𝜕𝒓2𝐷
1

𝜕𝒔2𝐷
3

𝜕𝒓2𝐷
2

𝜕𝒔2𝐷
1

𝜕𝒓2𝐷
2

𝜕𝒔2𝐷
2

𝜕𝒓2𝐷
2

𝜕𝒔2𝐷
3

𝜕𝒓2𝐷
3

𝜕𝒔2𝐷
1

𝜕𝒓2𝐷
3

𝜕𝒔2𝐷
2

𝜕𝒓2𝐷
3

𝜕𝒔2𝐷
3

0

0

𝜕𝒓3𝐷
1

𝜕𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

⋮
𝜕𝒓3𝐷

9

𝜕𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

0

𝜕𝒓3𝐷
1

𝜕𝒔3𝐷
1 ⋯

𝜕𝒓3𝐷
1

𝜕𝒔3𝐷
9

⋮ ⋱ ⋮
𝜕𝒓3𝐷

9

𝜕𝒔3𝐷
1 ⋯

𝜕𝒓3𝐷
9

𝜕𝒔3𝐷
9

Δ𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

Δ𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

Δ𝒔2𝐷
ℐ2𝐷

Δ𝒔3𝐷
ℐ3𝐷

= −

𝑹2𝐷
𝒩2𝐷−ℐ2𝐷 𝒔2𝐷

𝑹3𝐷
𝒩3𝐷−ℐ3𝐷 𝒔3𝐷
𝒓2𝐷
1 𝒔2𝐷
𝒓2𝐷
2 𝒔2𝐷
𝒓2𝐷
3 𝒔2𝐷

𝒓3𝐷
1 𝒔3𝐷

⋮
𝒓3𝐷
9 𝒔3𝐷



Coupling: New residuals
Build the new residuals (20) using the old residuals and constraints, as per (12) and (13)

(20)
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𝑹𝒩2𝐷−ℐ2𝐷 = 𝑹2𝐷
𝒩2𝐷−ℐ2𝐷

𝑹𝒩3𝐷−ℐ3𝐷 = 𝑹3𝐷
𝒩3𝐷−ℐ3𝐷

𝑹ℐ2𝐷 =

𝒓1 = 𝒓2𝐷
1 +  

𝑖∈𝒞 1

𝒓3𝐷
𝑖 = 𝒓2𝐷

1 + 𝒓3𝐷
1 + 𝒓3𝐷

2 + 𝒓3𝐷
3

𝒓2 = 𝒓2𝐷
2 +  

𝑖∈𝒞 2

𝒓3𝐷
𝑖 = 𝒓2𝐷

2 + 𝒓3𝐷
4 + 𝒓3𝐷

5 + 𝒓3𝐷
6

𝒓3 = 𝒓2𝐷
3 +  

𝑖∈𝒞 3

𝒓3𝐷
𝑖 = 𝒓2𝐷

3 + 𝒓3𝐷
7 + 𝒓3𝐷

8 + 𝒓3𝐷
9

𝑹ℐ3𝐷 = 𝑪 =

𝒄1 = 𝒔3𝐷
1 − 𝒔2𝐷

1

𝒄2 = 𝒔3𝐷
2 − 𝒔2𝐷

1

𝒄3 = 𝒔3𝐷
3 − 𝒔2𝐷

1

𝒄4 = 𝒔3𝐷
4 − 𝒔2𝐷

2

𝒄5 = 𝒔3𝐷
5 − 𝒔2𝐷

2

𝒄6 = 𝒔3𝐷
6 − 𝒔2𝐷

2

𝒄7 = 𝒔3𝐷
7 − 𝒔2𝐷

3

𝒄8 = 𝒔3𝐷
8 − 𝒔2𝐷

3

𝒄9 = 𝒔3𝐷
9 − 𝒔2𝐷

3



Coupling: New Jacobian
Build the modified Jacobian (21) for the Newton-Raphson iterations (9) using the modified residuals (20) and the 
derivatives (14) and (16)

(21)
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𝑁𝑒𝑤 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 =
𝜕𝑹

𝜕𝒔
=

𝜕𝑹2𝐷
𝒩2𝐷−ℐ2𝐷

𝜕𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

0
𝜕𝑹2𝐷

𝒩2𝐷−ℐ2𝐷

𝜕𝒔2𝐷
ℐ2𝐷

0

0
𝜕𝑹3𝐷

𝒩3𝐷−ℐ3𝐷

𝜕𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

0
𝜕𝑹3𝐷

𝒩3𝐷−ℐ3𝐷

𝜕𝒔3𝐷
ℐ3𝐷

𝜕𝒓1

𝜕𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

𝜕𝒓1

𝜕𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

𝜕𝒓2

𝜕𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

𝜕𝒓1

𝜕𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

𝜕𝒓2

𝜕𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

𝜕𝒓3

𝜕𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

𝜕𝒓1

𝜕𝒔2𝐷
1

𝜕𝒓1

𝜕𝒔2𝐷
2

𝜕𝒓1

𝜕𝒔2𝐷
3

𝜕𝒓2

𝜕𝒔2𝐷
1

𝜕𝒓2

𝜕𝒔2𝐷
2

𝜕𝒓2

𝜕𝒔2𝐷
3

𝜕𝒓3

𝜕𝒔2𝐷
1

𝜕𝒓3

𝜕𝒔2𝐷
2

𝜕𝒓3

𝜕𝒔2𝐷
3

𝜕𝒓1

𝜕𝒔3𝐷
1 ⋯

𝜕𝒓1

𝜕𝒔3𝐷
9

𝜕𝒓2

𝜕𝒔3𝐷
1 ⋯

𝜕𝒓2

𝜕𝒔3𝐷
9

𝜕𝒓3

𝜕𝒔3𝐷
1 ⋯

𝜕𝒓3

𝜕𝒔3𝐷
9

0 0

𝜕𝒄1

𝜕𝒔2𝐷
1

𝜕𝒄1

𝜕𝒔2𝐷
2

𝜕𝒄1

𝜕𝒔2𝐷
3

⋮ ⋮ ⋮
𝜕𝒄9

𝜕𝒔2𝐷
1

𝜕𝒄9

𝜕𝒔2𝐷
2

𝜕𝒄9

𝜕𝒔2𝐷
3

𝜕𝒄1

𝜕𝒔3𝐷
1 ⋯

𝜕𝒄1

𝜕𝒔3𝐷
9

⋮ ⋱ ⋮
𝜕𝒄9

𝜕𝒔3𝐷
1 ⋯

𝜕𝒄9

𝜕𝒔3𝐷
9



Coupling: New Jacobian
Expanding terms in the new Jacobian (21), making use of (15) and (17), we get (22)

(22)
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𝑁𝑒𝑤 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 =
𝜕𝑹

𝜕𝒔
=

𝜕𝑹2𝐷
𝒩2𝐷−ℐ2𝐷

𝜕𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

0
𝜕𝑹2𝐷

𝒩2𝐷−ℐ2𝐷

𝜕𝒔2𝐷
ℐ2𝐷

0

0
𝜕𝑹3𝐷

𝒩3𝐷−ℐ3𝐷

𝜕𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

0
𝜕𝑹3𝐷

𝒩3𝐷−ℐ3𝐷

𝜕𝒔3𝐷
ℐ3𝐷

𝜕𝒓2𝐷
1

𝜕𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

𝜕𝒓2𝐷
2

𝜕𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

𝜕𝒓2𝐷
3

𝜕𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

 
𝑖∈𝒞 1

𝜕𝒓3𝐷
𝑖

𝜕𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

 
𝑖∈𝒞 2

𝜕𝒓3𝐷
𝑖

𝜕𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

 
𝑖∈𝒞 3

𝜕𝒓3𝐷
𝑖

𝜕𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

𝜕𝒓2𝐷
1

𝜕𝒔2𝐷
1

𝜕𝒓2𝐷
1

𝜕𝒔2𝐷
2

𝜕𝒓2𝐷
1

𝜕𝒔2𝐷
3

𝜕𝒓2𝐷
2

𝜕𝒔2𝐷
1

𝜕𝒓2𝐷
2

𝜕𝒔2𝐷
2

𝜕𝒓2𝐷
2

𝜕𝒔2𝐷
3

𝜕𝒓2𝐷
3

𝜕𝒔2𝐷
1

𝜕𝒓2𝐷
3

𝜕𝒔2𝐷
2

𝜕𝒓2𝐷
3

𝜕𝒔2𝐷
3

 
𝑖∈𝒞 1

𝜕𝒓3𝐷
𝑖

𝜕𝒔3𝐷
1 ⋯  

𝑖∈𝒞 1

𝜕𝒓3𝐷
𝑖

𝜕𝒔3𝐷
9

 
𝑖∈𝒞 2

𝜕𝒓3𝐷
𝑖

𝜕𝒔3𝐷
1 ⋯  

𝑖∈𝒞 2

𝜕𝒓3𝐷
𝑖

𝜕𝒔3𝐷
9

 
𝑖∈𝒞 3

𝜕𝒓3𝐷
𝑖

𝜕𝒔3𝐷
1 ⋯  

𝑖∈𝒞 3

𝜕𝒓3𝐷
𝑖

𝜕𝒔3𝐷
9

0 0

− 𝐼

− 𝐼 0

− 𝐼

− 𝐼

− 𝐼

− 𝐼

− 𝐼

0 − 𝐼

− 𝐼

𝐼

𝐼

𝐼 0

𝐼

𝐼

𝐼

0 𝐼

𝐼

𝐼



Coupling: New system
The Newton-Raphson iterations (9) for the coupled system are given by (23), where we have used the coupled Jacobian 
(22) and coupled residuals (20)

(23)
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𝜕𝑹2𝐷
𝒩2𝐷−ℐ2𝐷

𝜕𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

0
𝜕𝑹2𝐷

𝒩2𝐷−ℐ2𝐷

𝜕𝒔2𝐷
ℐ2𝐷

0

0
𝜕𝑹3𝐷

𝒩3𝐷−ℐ3𝐷

𝜕𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

0
𝜕𝑹3𝐷

𝒩3𝐷−ℐ3𝐷

𝜕𝒔3𝐷
ℐ3𝐷

𝜕𝒓2𝐷
1

𝜕𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

𝜕𝒓2𝐷
2

𝜕𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

𝜕𝒓2𝐷
3

𝜕𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

 
𝑖∈𝒞 1

𝜕𝒓3𝐷
𝑖

𝜕𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

 
𝑖∈𝒞 2

𝜕𝒓3𝐷
𝑖

𝜕𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

 
𝑖∈𝒞 3

𝜕𝒓3𝐷
𝑖

𝜕𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

𝜕𝒓2𝐷
1

𝜕𝒔2𝐷
1

𝜕𝒓2𝐷
1

𝜕𝒔2𝐷
2

𝜕𝒓2𝐷
1

𝜕𝒔2𝐷
3

𝜕𝒓2𝐷
2

𝜕𝒔2𝐷
1

𝜕𝒓2𝐷
2

𝜕𝒔2𝐷
2

𝜕𝒓2𝐷
2

𝜕𝒔2𝐷
3

𝜕𝒓2𝐷
3

𝜕𝒔2𝐷
1

𝜕𝒓2𝐷
3

𝜕𝒔2𝐷
2

𝜕𝒓2𝐷
3

𝜕𝒔2𝐷
3

 
𝑖∈𝒞 1

𝜕𝒓3𝐷
𝑖

𝜕𝒔3𝐷
1 ⋯  

𝑖∈𝒞 1

𝜕𝒓3𝐷
𝑖

𝜕𝒔3𝐷
9

 
𝑖∈𝒞 2

𝜕𝒓3𝐷
𝑖

𝜕𝒔3𝐷
1 ⋯  

𝑖∈𝒞 2

𝜕𝒓3𝐷
𝑖

𝜕𝒔3𝐷
9

 
𝑖∈𝒞 3

𝜕𝒓3𝐷
𝑖

𝜕𝒔3𝐷
1 ⋯  

𝑖∈𝒞 3

𝜕𝒓3𝐷
𝑖

𝜕𝒔3𝐷
9

0 0

− 𝐼

− 𝐼 0

− 𝐼

− 𝐼

− 𝐼

− 𝐼

− 𝐼

0 − 𝐼

− 𝐼

𝐼

𝐼

𝐼 0

𝐼

𝐼

𝐼

0 𝐼

𝐼

𝐼

Δ𝒔2𝐷
𝒩2𝐷−ℐ2𝐷

Δ𝒔3𝐷
𝒩3𝐷−ℐ3𝐷

Δ𝒔2𝐷
ℐ2𝐷

Δ𝒔3𝐷
ℐ3𝐷

= −

𝑹2𝐷
𝒩2𝐷−ℐ2𝐷 𝒔2𝐷

𝑹3𝐷
𝒩3𝐷−ℐ3𝐷 𝒔3𝐷

𝒓2𝐷
1 𝒔2𝐷 + 𝒓3𝐷

1 𝒔3𝐷 + 𝒓3𝐷
2 𝒔3𝐷 + 𝒓3𝐷

3 𝒔3𝐷
𝒓2𝐷
2 𝒔2𝐷 + 𝒓3𝐷

4 𝒔3𝐷 + 𝒓3𝐷
5 𝒔3𝐷 + 𝒓3𝐷

6 𝒔3𝐷
𝒓2𝐷
3 𝒔2𝐷 + 𝒓3𝐷

7 𝒔3𝐷 + 𝒓3𝐷
8 𝒔3𝐷 + 𝒓3𝐷

9 𝒔3𝐷
𝒔3𝐷
1 − 𝒔2𝐷

1

𝒔3𝐷
2 − 𝒔2𝐷

1

𝒔3𝐷
3 − 𝒔2𝐷

1

𝒔3𝐷
4 − 𝒔2𝐷

2

𝒔3𝐷
5 − 𝒔2𝐷

2

𝒔3𝐷
6 − 𝒔2𝐷

2

𝒔3𝐷
7 − 𝒔2𝐷

3

𝒔3𝐷
8 − 𝒔2𝐷

3

𝒔3𝐷
9 − 𝒔2𝐷

3



Discussion
Conservation of quantities at the 2D-3D interface

◦ Enforced continuity of water surface elevation

◦ Enforced continuity of depth averaged velocity

Solvability of the coupled 2D-3D system
◦ Started with the individual (non-coupled) models, solvable upon application of boundary conditions at the interface

◦ New 2D interface residuals obtained by summing up linearly independent interface residuals

◦ New 3D interface residuals set to be linearly independent constraints

Bathymetry fixed in time
◦ Not applicable for sediment transport, for example

Transport of constituents in the coupled 2D-3D model
◦ Nearly identical treatment, 1 equation per node, per constituent, instead of 3 equations per node for SW

Continuity equation and different solution variables need separate treatment
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Questions?
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Thank You!
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