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Introduction

Adaptive Hydraulics (AdH): (US Army Corps of Engineers)
o 2D and 3D shallow water (SW) equations

o 3D Navier-Stokes equations
o Barotropic/baroclinic transport of constituents (salinity, temperature, sediments, etc.)

o Spatiotemporal adaptivity
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Objective

“To algebraically couple 2D and 3D shallow water models in AdH, in a conservative manner”
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Solution method

Spatial discretization of PDE’s to generate nonlinear ODE’s in time
o Streamline upwind Petrov-Galerkin (SUPG) method

Temporal discretization of nonlinear ODE’s to generate a system of nonlinear equations
° Up to second order implicit finite difference method

Nonlinear equations solved using Newton-Raphson iterative method
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AdH: 2D SW models

Equations after applying SUPG
> Depth integrated continuity equation (1)

Z f [(pi%—vz%i -(vh)ldﬂgl’+ jﬁ [p;(Th) -n]doQ + B |=o0

1
91D Boundary terms (mass flux) SUPG terms ( )
e
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€ Interior terms (IBP)

o Depth integrated horizontal momentum equations (2) and (3)
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AdH: 3D SW models

Equations after applying SUPG
o Depth summed continuity equation (4)

Z z [~V¢; - v]dQ3P +z f[¢i%nzldangg+ f[qbi%nzldaﬂgg + Z Z f [pv-nldoQZl  + z Z pe =0

—
iec(l) e QZD Interior terms (IBP) e iec(l) e 6032 Vertical boundary mass flux ieC(I) e SUPG terms

€S Surface mass flux eb  Bedmass flux

(4)

> Horizontal momentum equations (5) and (6)

9 d¢g; P P
Y| e+ | [—qui ) = pufo+ S+ T rx] an+ | [cmn (@) + 1y —] 002 - [ [puCecmldongh +  p =0
e q3D Interior terms (1BP) Q3D Po Q2D Po Q2D Side wall stress SUPG terms
e e Interior terms (IBP) &Y yertical boundary momentum flux ew
(5)
0 3D d¢; P 3D p 2D 2D my
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e e Interior terms (IBP) &Y yertical boundary momentum flux ew

(6)
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AdH: Final equations

2D SW models:
rrﬁjzc)(sw(tnﬂ)) =0
T%D = < T'lrg%(SZD(tn-l-l)) =0
L7”1C,2D (s20(&™1)) =0
;
5 (s2p (™)) =0
5p = { Tazp(S20(t™1)) = 0
\7"2C,2D (s2p(t™1)) =0
%20 (S2p (")) = 0
where

(= = S T
S,p = {iy, Uy, hy, ..., Uy, Uy, Ay}
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(

55 (s3p (™)) = 0
7"11,';31}) (s3p(t™™)) =0

Lr1c,3D (53p (&™) =0

frz,ﬂé)i)(sw(tnﬂ)) =0
s (S3p (™)) =0

3D SW models:
ri, =+
r%D =1
where

— T
S3p = {u, vy, dy, ., Uy, VN, dyd
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\7"26,3D (s3p(t™*1)) =0

3p(S3p (")) = 0

(7)




AdH: Final equations

Nonlinear equations in vector form for both 2D and 3D models can be written as (8)

R(sn+1) =0 (8)

Newton-Raphson iterations (9) are set up to solve (8)

)
OR . .
(i+1) _ (i)
(asn+1> ASn+1 - R(Sn+1) (9)
(i+1) _ (D + AS(i+1)

Sn+1 - Sn+1 n+1
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AdH: Final equations

Newton-Raphson iterations (9) for 2D SW models, for example, look like (10)

(Iteration index ‘i’ and time step number ‘n’ dropped hereafter)
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Notation

N2ZD Set of all nodes in the 2D model

g%b Set of all nodes in the 2D model that lie on the 2D-3D interface
R,p Global residual vector of the 2D domain

ri, = { iy lZD, 9 ' Nonlinear residual vector at node i of the 2D domain

sty = {u;, v;, hi}T Solution vector at node i of the 2D domain

N3D Set of all nodes in the 3D model

g3b Set of all nodes in the 3D model that lie on the 2D-3D interface
R:p Global residual vector of the 3D domain

rip = {18515 Tiap ! Nonlinear residual vector at node i of the 3D domain

sty = {u;,v;, d;}7 Solution vector at node i of the 3D domain
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Notation

T
R = {RNZD_?ZD, RV?P-7P RI*P R73D} (Rearranged) global residual vector of the coupled domain

S—{ A2D_q2D  5r3D_q3D 42D 730}T

S5p ,S3p ,S2p »S3p (Rearranged) global solution vector of the coupled domain

m T . . .
r; = {rimx,ri 7, rl-c} New residual vector at node i of the coupled domain

Shp, ifi € N?P

st = C 3D Solution vector at node i of the coupled domain
S3p, IfLEN
C; Linear constraint applied at node i of the 3D interface
C ={c}"’ Constraint vector for all nodes on the 3D interface
K A node on the 2D model interface
C(X) The column (set) of 3D model interface nodes that K is coupled to
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Example

Primary set definitions:
N?2P = {All nodes in 2D model}

N3P = {All nodes in 3D model}

Separate Interface Nodes:

922 = {15p,25p,32p}
ng = {131), 23D' 33D' 4‘, ,9}

Node Columns:
C(K = 1,p) = {13p,23p,33p}
C(:]C = ZZD) = {4‘, 5, 6}
C(K =3,p) =1{7,8,9}
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Coupling: Old system

Newton iterations (9) for the combined, reordered (non-coupled) 2D-3D system are given by (11)

2D 2D 2D _ 492D 1
OR), 7 oRY, 7
aS]\/'ZD_:]ZD [0] aS:]ZD [0]
2D 2D
3D _ 43D 3D _4q3D 2D _q2D 2D _ 42D
o] 2R A i I £ S € 19)
3D_q3D 3D 3D_ 43D 3D _4q3D
0s3p 0s3p <AS% ! >:_<R§V1; ! (-Tfsp)> (11)
oR%, oRY, Asly R}p (52p)
[0] [0]
asyy dsly, \ asly \ RI, (s3p)
3D 3D
3D_q3D 3D
_ asd 7 asi,
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Coupling: New residuals

Define the ‘new,” coupled residuals using (12)

]
. vj € N2D — 32D
i Vj e N3P — 3P
J = : .
R377 =+ T, + Z ri, Vjej?P (12)
ieC(j)
(530 — S7p Vj € 73P, where 3! K € 7?P:j € C(K)

In vector form, (12) can be informally rewritten as (13)

(Note: X* is not a function, just notation)
RNZD_:]ZD _ RNZD_jZD

RN3D :]SD _ RN3D_:73D
RjZD_ R‘72D + Z (R‘73D)

R:]SD _ C

(13)
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Coupling: New Jacobian

Derivatives for new residuals (12) at the 2D interface nodes are given by (14)

or¥  ork or’
= 2D + Z 3D VK € 72D (14)

ds  0s ds

jec(x)cg3D

Eqg. (14) can be reinterpreted as (15) for programming purposes

Block row (KX) _ Block row (¥) E Block row (j) VK € 72D (15)
jEC(K

(New Jacobian) = (0ld Jacobian) )(0ld Jacobian)
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Coupling: New Jacobian

Derivatives for new residuals (12) at the 3D interface nodes are given by (16)

or’ aséD as3% +], lfl —J vj € 730, where
dsi _ dsi  dst ~l1) =% JNK € 7?P:j e C(K)
[0], otherwise ' J

Eqg. (16) can be reinterpreted as (17) for programming purposes

New Jacobian Block[j][j] = +[I] Vj € 73P, where
New Jacobian Block[j][K] = —[I] K € T?P:j € C(K)
New Jacobian Block]j][i] = [0] and i + j, K
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Coupling: New system

Use the new residuals (12), and derivatives (14) and (16), to modify the non-coupled system (11), to get the coupled
system (18)

aRNZD :]ZD aRNZD 72D ]
aSNZD gZD [0] aSJZD [0]
2D 2D
N3D_g3D NSD—73D ( NZD_:]ZD\ ( NZD_:]ZD( ZD) \
0R3p OR3p As3p
[O] [O] 3D 3D
n3D_g3D 73D 3D _g3D R, 7 (s3p)
asgp aSSD { AS3D > — —< sz 73D > (18)
D
ORI Y (R:13D) ORI oy (jo)") As? p (S2p) + X7 ( (5313))
2D_q2D 3D_q3D 2D 3D g3b 92D 43D
as, 7 9P aajc a;%‘) \ Aszp, \ C(SZD 1531)) )
[0] [0] —5
sl osly

Solve (20) and update the solution vector

Check if nonlinear equations (8) are satisfied within user-defined tolerance
o If YES, then increment time step
o If NO, perform the next Newton-Raphson iteration
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Example

Primary set definitions:
N?2P = {All nodes in 2D model}

N3P = {All nodes in 3D model}

Separate Interface Nodes:

922 = {15p,25p,32p}
ng = {131), 23D' 33D' 4‘, ,9}

Node Columns:
C(K = 1,p) = {13p,23p,33p}
C(:]C = ZZD) = {4‘, 5, 6}
C(K =3,p) =1{7,8,9}
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Coupling: Old system

Build the ‘old’ system of equations (19), as defined in (11)

[ aRNZD—ﬂzD . aRNZD_sz .
as_;\/‘DZD_gZD [0] OST [0]
. aRé\f;D—ﬂw ) aR%\wa_gsD
[ ] aSN3D_‘73D [ ] GST
3D 3D NZD_:]ZD( )\
1 - ] ] S2p
% ar%D ar%D ar%D N3D—73D( )
Oszp 0szp 0s3p 0s3p (AsDZP=72P) 53D
2D /
a 2 2 2 3D 3D 55 (S2p)
rZD aTZD GTZD GTZD ASN -7 5
T NZD_7D [0] [0] 3D = _{ 72p(s2p)
N 2D_g2D 1 2 3 < > = —< \ (19)
S5y 0syp, 0S5, 0S5 AngDD 13, (50
or3p orsp 0rsp 0r3p L As?? ) (11 )
2D 32D osl  9s2. Js3 S3p r3p(S3p
LRy | L0S2p  0Szp 0S3pld ) :
T - - 9
& or3p orip . (3p(s3p)) J
N3D_g93D 1 (X )
0] 053 0] 0S3p dS3p
0 : 0 : . :
953, 77" ] 053p 0s3p ]
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Coupling: New residuals

Build the new residuals (20) using the old residuals and constraints, as per (12) and (13)
RNZD_:]ZD _ RNZD_gZD
— 2D

RNSD_:]SD _ RN3D—:73D

3D
f1_1+ i_1+1+2+3\
r-=r3p r3p =Tp TT3p TT3p TT3p
iec(1)
2D 2 _ .2 i .2 4 5 6
R =/{1r" =713+ z T3p =T3p +1T3p +T3p+73p %
ieCc(2)
r =r§D + Z T3p =r§D +r§D +7'§D +rgD
\ i€C(3) J (20)
1_ o1 1
fC —SsD_SZDw
2 _ o2 1
C" =S3p — S3p
¢’ =s3p — Sip
4 _ A 2
. C =S3p— S2p
3
R =C={c"=s3,— s5p
6 _ 6 2
C" =S3p— S2p
7 _ o7 3
C =S3p— Sp
8 _ 8 3
C" =S83p— S2p
(¢’ = s, — s3,)
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Coupling: New Jacobian

Build the modified Jacobian (21) for the Newton-Raphson iterations (9) using the modified residuals (20) and the

derivatives (14) and (16)

N ] = — =
(New Jacobian) s
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r NZD_gZD NZD_gZD
aS]\/‘ZD_:]ZD [ ] aS:]ZD [ ]
2D 2D
3D _ 43D 3D _ 43D
R}, 7 R}, 7
3D _q93D 3D
[0] aSN 7 [0] asg
3D 3D
1 1 ) o
or or art  ort  ort orl or!
NZD_gZD NSD_:]SD 1 2 3 1 9
0S5p 0s3p sy, 0S5, 0S5 0S3p 0s3p
orl or? or:  oar:  or? or? or?
N2D_g2D N3D_g3D 1 2 3 1 9
2s5p oS3 sy, 0S5, 0S5, 0S3p 0S3p
or? or3 ard  ord  ord or3 or3
2D _q2D 3D _q3D 1 2 3 1 9
asy, 7 asy 7 0s3p  0s3p  0sypl 10s3p ds3p
"dc!  dct  act] [oct dct
1 2 3 1 9
dsyp  0s3p  0s3p| |9S3p ds3p
[0] [0] : : : : :
oc® odc® ac® ac® ac®
1 2 3 1 9
0s3p  0S3p  0sypl 10s3p 0s3p

(21)




Coupling: New Jacobian

Expanding terms in the new Jacobian (21), making use of (15) and (17), we get (22)

(New Jacobian) = Is
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a %ZD_:'IZD

2D 2D
asN -7
2D

[0]

1
aryp
NZD_gZD

0s5p

2
arsp
_‘N'ZD_gZD

0s5p

3
orsp

2D _q2D
as]\/' =7
LUS9p i

aRNZD_:]ZD
[0] 2D:—,ZD
a8y
N3D—73D
it T [0]
0s3p '
Z & -ar%D Br%D ar%D-
iec(1)as§‘gl’)'7w dsy, 0sip, 09s3)
Z ors, ors, ori, odrip
iec(z)as%w_jw dsl, 0s3, 0ds3,
Z ort, orsp, dr3p 0r3p
i iec(s)asé‘gl)‘gw_ [0s3, 0s3,  0s5p.
[—[1]
—[1] [0]
—[1]
—[1]
[0] —[1]
—[1]
—[1]
[0] —[1]
—[11

2.
2.
2.

7]

i
orsp

iec(1) 053

i
aryp

iec(2) 083

i
orsp

iec(3) 053

[1]
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[1]

N3D—.73D

73D
0s3p

orsy]
Ziee(n 0s3p
ors,
Ziee(z) 0s3p
oryp
Ziec(3) ds3p ]
[0]
[1]
[1]
[1]1.

(22)




Coupling: New system

The Newton-Raphson iterations (9) for the coupled system are given by (23), where we have used the coupled Jacobian

(22) and coupled residuals (20)

2.
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_ aR%\fDZD_72D aRNZD_jZD
osty” o o
aRN3D_73D
[0] T [0]
0s3p .
ar3p Z or5p orl, ork, orlp]
dsZP-92P icccydsyy, """\ |ast, 9s%, s,
ors, z ors, or:, ori, orip
asyy " lEC(z)asNSD‘f’sD dsi, 0s3, 09s3,
s %ZD 720 | zec(s)asN3D‘73D_ dsyp 0s3, 0s3p]
[—[1]
—[1] [0]
—[1]
—[1]
(0] [0] —[1
—[1]
—[1]
[0] —[1]
—[1]

2.

(7]

2.

i
aryp

iec(1) 983p

i
aryp

iec(2) 083p

i
aryp

iec(3) 083p

(1]

aRN3D_‘73D

73D
0s3p

Z orkp]
iec(1) 953

Z ars,
iec(2) 953

i
orsp

Zi€€(3) as3p ]

[0]

NZD _jZD

As5p

Asgv[-)?»D _:73D

As
As

jZD
2D
:73D
3D
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2D 2D
RN =7

2D

N3D _73D

(s2p)

(s3p)

r3p(szp) +1ip (530) +135p(s3p) + r3p(s3p)
35 (S2p) + T3p(S3p) + 13p(s3p) + 155 (s3p)
r3p(s2p) + 1r3p(s3p) + 155 (S3p) + 135 (S3p)

(s3p

1
Sop)

1
S$3p

(23)




Discussion

Conservation of quantities at the 2D-3D interface
o Enforced continuity of water surface elevation

o Enforced continuity of depth averaged velocity

Solvability of the coupled 2D-3D system
o Started with the individual (non-coupled) models, solvable upon application of boundary conditions at the interface

o New 2D interface residuals obtained by summing up linearly independent interface residuals
o New 3D interface residuals set to be linearly independent constraints

Bathymetry fixed in time
° Not applicable for sediment transport, for example

Transport of constituents in the coupled 2D-3D model
o Nearly identical treatment, 1 equation per node, per constituent, instead of 3 equations per node for SW

Continuity equation and different solution variables need separate treatment

Friday, April 8, 2016 COMPUTATIONAL HYDRAULICS GROUP | THE UNIVERSITY OF TEXAS AT AUSTIN




Acknowledgments

This project was funded by the US Army Corps of Engineers, project PP-EQM-KY07-001-P3, under the Department of
Defense (DOD) High Performance Computing Modernization Program (HPCMP), contract No. GS04T09DBC0017.

We acknowledge the following people for their contributions to this work:
o Dr. Clint Dawson (Professor, The University of Texas at Austin)
o Dr. Corey Trahan (Research Physicist, US Army Corps of Engineers)
o Dr. Matthew Farthing (Research Hydraulic Engineer, US Army Corps of Engineers)
o Dr. Charlie Berger (Research Hydraulic Engineer, US Army Corps of Engineers)

Friday, April 8, 2016 COMPUTATIONAL HYDRAULICS GROUP | THE UNIVERSITY OF TEXAS AT AUSTIN




References

[1] C. B. Vreugdenhil, Numerical methods for shallow-water flow, Springer Science & Business Media, 2013.

[2] A. N. Brooks and T. J. Hughes, "Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with
particular emphasis on the incompressible Navier-Stokes equations," Computer methods in applied mechanics and
engineering, vol. 32, no. 1, pp. 199-259, 1982.

[3] C. J. Trahan, G. Savant and R. C. Berger, "Streamline Upwind Petrov-Galerkin stabilization in the Adaptive Hydraulics
shallow water models," ERDC/CHL, 2016.

[4] R. C. Berger and M. W. Farthing, "Adaptive Hydraulics: 3D Shallow Water Model, Equation Development," ERDC/CHL,
2014.

Friday, April 8, 2016 COMPUTATIONAL HYDRAULICS GROUP | THE UNIVERSITY OF TEXAS AT AUSTIN



Questions?
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Thank You!
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