
1 Project findings

We summarize our project findings on DG methods for the three-dimensional shallow water equa-
tions, bed morphology, and non-phase resolving wave models, the use of quadrilateral and triangular
elements in the context of DG methods, and the development of an automatic unstructured mesh
generation tool below.

1.1 DG methods for the three-dimensional shallow water equations

We have developed a novel DG method for the three-dimensional shallow water equations. In
standard Cartesian-coordinates, (x̃, ỹ, z̃), these equations, which consist of the continuity equation
and the equations of horizontal momentum balance, take the form
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where ũ, ṽ, and w̃ are the velocity components in the x̃, ỹ, and z̃ directions, respectively, ζ is the
free surface elevation measured from still water level, f is the Coriolis parameter, g is gravitational
acceleration, and µ̃ is a vertical eddy viscosity coefficient.

These equations are solved over a time-dependent domain Ω̃(t) ⊂ R
3 and subject to the following

boundary conditions:

• Free surface boundary conditions at z̃ = ζ
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+ ṽ(ζ)

∂ζ

∂ỹ
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where ũ = [ũ, ṽ w̃] is the velocity vector and τs is a (specified) surface stress.

• Bottom boundary conditions at z̃ = −h
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where n = [nx, ny, nz] is an outward unit vector normal to the boundary, ũxy = [ũ, ṽ] is the
horizontal velocity vector, and Cf is a friction coefficient.

• Lateral boundary conditions: We currently consider two types of lateral boundary conditions:

1. Land boundary: No-normal flow
ũ · n = 0

2. Open ocean boundary: Prescribed surface elevation ζo

ζ = ζo(x, y, t)
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Our DG formulation makes use of discontinuous polynomial spaces of arbitrary order for all the
primary variables, including the free surface elevation. In a standard Cartesian-coordinate system,
this results in elements at the free surface having mismatched lateral faces (a staircase boundary).
This difficulty is avoided in the current method by employing a so-called sigma-coordinate system,
which transforms both the free surface and bottom boundaries into coordinate surfaces. This
transformation is given by

x = x̃, y = ỹ, σ =
z̃ − ζ

h+ ζ
, t = t̃. (1)

Note that this transformation gives σ = 0 at the free surface (z̃ = ζ) and σ = −1 at the bottom
(z̃ = −h); see Figure 1. Derivatives of a function f̃(x̃, ỹ, z̃, t̃) = f(x, y, σ, t) with respect to the
original coordinates (x̃, ỹ, z̃, t̃) are related to derivatives in the new coordinates (x, y, σ, t) by the
relations
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where H = ζ + h is the total depth of the water.
Using these relations, the equations in sigma-coordinates can be written in the form
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where ω is the transformed vertical velocity (physically, this is the velocity component normal to
the sigma surfaces). The boundary conditions undergo a similar transformation.

DG discretization. The top sigma-coordinate surface, which corresponds to the free surface,
is discretized using a two-dimensional triangular mesh that is extended in the vertical direction
to produce a three-dimensional mesh of one or more layers of triangular prismatic elements. To
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obtain a weak form of the momentum equations we multiply (4) and (5) by arbitrary smooth test
functions φ, integrate over each element Ωe, and integrate by parts to obtain

∫

Ωe

∂Q

∂t
φ dV −

∫

Ωe

F(Q) ∇φ dV +

∫

∂Ωe

F · n dA =

∫

Ωe

s φ dV (6)

where Q ≡ [Hu, Hv] and

F =











Hu2, Huv, uω − µ
∂u

∂σ

Huv, Hv2, vω − µ
∂v

∂σ











, s =











fHv − gH
∂ζ

∂x

−fHu− gH
∂ζ

∂y











.

Next, we seek to approximate Q, a solution to (6), with a function Qh in some finite-dimensional
subspace. Thus, we replace Q by Qh in our weak formulation, and we replace the flux function
F in the integrals over interior faces with a suitably chosen numerical flux due to the fact that
the approximation spaces used in DG methods do not guarantee continuity across inter-element
boundaries. These numerical fluxes must be suitably chosen so that they preserve consistency and
stability of the method. In our implementation, we are using the local Lax-Friedrichs flux for the
advective numerical fluxes and a local DG (LDG) formulation for the vertical viscosity numerical
fluxes; see, for example, [2] for details on the LDG formulation.

An approximation to the free surface elevation is obtained from a weak form of the depth-
integrated, sigma-coordinate continuity equation. Depth-integration of (3) (making use of the
vertical boundary conditions) yields

∂ζ

∂t
+ ∇ · Q̄ = 0 (7)

where Q̄ = [Hū, Hv̄] is the depth-integrated flux vector. Multiplying (7) by an arbitrary smooth
test functions φ, integrating over each triangular face of the top layer of elements Ωe,xy, and
integrating by parts we obtain
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Again, we obtain a discrete weak form of the problem by replacing ζ with a function ζh from
some finite-dimensional subspace and by making use of a suitably defined numerical flux for Q̄

along the element edges.
Finally, we obtain the vertical velocity ω by using both the primitive and depth-integrated

versions of the continuity equations. Specifically, setting (3) equal to (7), solving for ∂ω
∂σ , replacing

Q and Q̄ by their finite-dimensional approximations, and integrating we obtain
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Numerical implementation and preliminary results: The polynomial spaces used over the
triangular prismatic elements are constructed using a set of orthogonal basis functions defined by
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Figure 1: Preliminary numerical results using the proposed DG method showing the free surface elevation
(left) and velocity (right) solutions.

where P
(α,β)
n is the n-th order Jacobi polynomial of weights α and β, and η1, η2, and η3 are a

coordinate system defined over a suitably defined reference element.
The use of these basis functions results in several desirable properties in terms of numerical

implementation. First, they have the following orthogonality property
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which, of course, results in a diagonal mass matrix. Second, the use of this basis results in a very
simple form of the discrete depth-averaged flux variables Q̄h. Specifically, using various properties
and identities of the Jacobi polynomials, it can be shown that for N sigma layers we have
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∫ 0
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m
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where m is the number of degrees of freedom for a triangular element of a given degree, φ
(2D)
j is a

set of orthogonal basis functions for the triangle, which is a subset of the basis functions for the
triangular prismatic elements, and

{

Q̄j

}

is the set of depth-averaged flux degrees of freedom, which
are given by
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1

N

N−1
∑

i=0

Q
(i)
j .

That is, the degrees of freedom of the depth-averaged flux variables Q̄h are simply the average of
the appropriate m degrees of freedom of Qh over a sigma layer.

Preliminary numerical results of the proposed method applied to an analytic test case for the
linear, three-dimensional shallow water equations are shown in Figure (1) using piecewise linear
elements. Additional testing and h and p convergence studies are currently underway.
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1.2 DG methods for bed morphology

We have developed, analyzed, and implemented a coupled, robust, efficient, parallel DG finite ele-
ment morphological model designed for two-dimensional unstructured meshes. The model has been
implemented within the Advanced Circulation (ADCIRC) modeling framework. Some preliminary
code and model verification work has been done. Specifically, we have achieved the following thus
far:

• We have formulated the LDG method for the tightly-coupled morphological system, including
all diffusion terms, and have derived an a priori error estimate for a slightly simplified form
of this system.

• We have implemented the tightly-coupled morphological system without the diffusion terms,
but with added stabilization terms designed to handle the non-conservative product arising
in the momentum equations within the ADCIRC modeling framework [5].

• We have done some preliminary code and model verification work by testing the h- and p-
convergence rates against the theoretical rates. This was achieved by comparing the DG
model solution against an exact solution [5].

• The model’s convergence behavior has been tested, at least qualitatively, on several simplified,
idealistic two-dimensional coastal modeling applications. Our observations are compared with
those in the literature, where available [5].

• We have added a higher-order slope limiting algorithm to the implementation, which is de-
signed to mitigate spurious oscillations in DG solutions up to order two.

One recent application of the DG morphological model concerns scouring around a bridge pier.
In this problem, an initially flat bed is subjected to a uniform, unidirectional flow originating from
the western (upstream) boundary. This free stream or upstream velocity is denoted as u∞ =
(u∞, 0)T . The domain under study in this test case is a square of side length 30 m with a circular
island of diameterD = 2 m positioned at the origin. However, since the true solution w is symmetric
about the x-axis, our domain is chosen as

Ω = {(x, y) ∈ R
2 : x ∈ (−15, 15), y ∈ (0, 15), x2 + y2 > 1}

in order to save computational time. The bed is initially flat with a depth of 1 m. Boundary
conditions are as follows: at x = −15, the velocity is fixed at u∞ = 0.2 m/s. At the bridge pile
boundary, a no normal flow boundary condition is imposed. No normal flow is also imposed at
the top (y = 15) and along the axis of symmetry (y = 0). At x = 15, the free surface elevation
is specified as ζ = 0. Below we show results for a DG solution using piecewise quadratic (p = 2)
solutions. A WENO-type limiter is used for the purpose of enforcing some form of TVB stability.

For this problem, experimental results show that the basic scouring process and flow profile
evolution may be summarized as follows. The initial approach flow splits in the horizontal direction
when reaching the pier into an upper and lower flow, leaving a stagnation point at the head of
the pier (the point (−1, 0) in our domain). A corresponding stagnation pressure results; fluid
approaching the stagnation point decelerates, causing some pileup (and thus an increase in ζ) [4]
and a bow wave, and then accelerates along the sides of the pier [3]. The fully-developed flow speed
along the pier perimeter reaches its maximum at an angle θ ≈ 75◦ from the pier head, but then
separates in the region 90◦ ≤ θ ≤ 120◦ as a result of the acceleration along the sides [7], and a long
wake results. Meanwhile, scouring of the bed is initiated near θ ≈ 75◦, closely corresponding to the
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Figure 2: Bed profile after 1 day.

Figure 3: Velocity profile after 1 day.
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point where the (attached) accelerating flow reaches its maximum speed [7]. Sediment accretion
occurs just downstream of the pier, and the mound slowly drifts downstream with time because of
the growing scour hole [7].

However, it should be noted that in addition to this, the approach flow also splits in the vertical
direction at the upstream stagnation point; the up-flow contributes to the formation of the bow
wave, while the down-flow forms a vertical eddy or vortex [3]. Because of accelerating flow around
the pile, a horseshoe vortex system is subsequently formed, and this has been deemed to be the
main scouring agent upstream of the pier [3, 7]. Thus, in time, the scour hole advances upstream,
eventually becoming U-shaped [3]. We note that this latter process is inherently a three-dimensional
effect, and consequently we cannot hope to properly simulate it with our two-dimensional model.

The resulting bed profile is shown in Figure 2. The corresponding velocity profile is displayed
in Figure 3. In all results, the locations of the stagnation points, scouring initiation points, points
of maximum flow speed along the perimeter, and flow separation points appear to be in good
agreement with the results presented in [4] and [7]. In Figure 2, it can be seen that scouring
emanates from a point on the pier perimeter near θ = 75◦, which agrees with experimental data
in [7], and then is deposited just downstream of the pile, as should be expected.

1.3 DG methodology for non-phase resolving wave models

We have studied and implemented finite volume methods for non-phase resolving wave models,
with the intent of extending the model to higher order over the next year. As a preliminary test
of the model, we have studies the modeling of waves in the presence of an ambient current. As
an example, harmonic, long-crested waves are considered propagating from a uniform, upwave
boundary (the x-axis) through deep water (10,000m) over a distance of 4,000m with a current that
decreases from 0 to -2m/s in the downwave direction. The harmonic waves are simulated with
a Gaussian-shaped frequency spectrum with peak frequency 0.1 Hz and standard deviation 0.01
Hz. The long-crestedness is simulated with a cos500(θ) directional distribution. The geographic
domain is rectangular from 0 to 16,000m with △x = 640m in the x-direction and 0 to 4,000m with
△y = 40m in the y-direction. The directional domain is from 60◦ to 120◦ with △θ = 1◦. The
frequency spectrum is from 0.05 to 0.25 Hz with 41 logorithimcally distributed discrete frequencies.

The analytical solution for this test case is given by [1] [6]:

H2

H2
i

=
c2i

c(c+ 2U)

c

ci
=

1

2
+ 12

(

1 + 4
U

ci

)1/2

pp where H is the wave height and c is the group velocity and i denotes an incident value. The
results are shown in Figure (4) and compare the results of our wave model with the analytical
solution as well as with the Simulating WAves Nearshore model (SWAN).

1.4 Performance Comparison of Nodal DG on Triangles and Quadrilaterals

In collaborative work with University of Notre Dame on triangular vs. quadrilateral elements for DG
methods, we considered the relationship between the accuracy of the approximate solution using
different element types and the total computing times used. Figure 5 shows the maximum absolute
error in the solution at t = 0.8 versus the computing time required to integrate the problem in
time. Figure 5(a) reports the results where the triangular meshes are used. The numerical results
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Figure 4: The significant wave height in meters obtain from the exact solution, the UT code, and
the SWAN model for the ambient current case.

obtained on the square meshes with the Legendre-Gauss-Lobatto (LGL) nodal set are plotted in
Figure 5(b) and with the Legendre-Gauss nodal set in Figure 5(c). Note that each curve is the
result of using different levels of resolution. The symbols on each line denote the error for different
orders of basis p employed. It can be observed that, as the order p increases, as expected, the
computing time required is longer in order to achieve spectral accuracy. The longer run times
are a consequence of the use of smaller ∆t in the RKF45 (note here we let the RKF45 select
the size of ∆t automatically). In addition, to obtaining a solution of a certain specified accuracy,
the computing time required is shorter for a coarser mesh with a higher order p. In other words,
it is more efficient to use a coarser mesh with a higher order p. To see more clearly how the
methods compare on the meshes of different resolutions, we plot the error on the mesh of different
resolutions when the order p is held fixed against the computing times in Figure 6 for p = 1 to 4
and in Figure 7 for p = 5 to 8. Note that each line corresponds to a result of a different element
type. The symbols on each line represent the three different resolutions. It can be observed that,
for the quadrilateral elements, to obtain a certain accuracy, the use of the LG nodal set takes
less computing time than that of the LGL nodal set for most cases. In addition, regarding the
computing cost to achieve a similar accuracy, the DG solutions on the quadrilateral elements (both
square and skewed-rectangular elements) are more efficient than that on the triangular elements.
To gain a better idea quantitatively of how these methods compare, we fit, in a least square sense,
the log-log plots with a linear function and then calculate from the fitting result a computing time
for a required accuracy, denoted as ǫ. Table 1 tabulates the computing times corresponding to the
given values of ǫ for different types of elements and the different values of p. Note that the values
of ǫ are selected such that they are well in the range of data considered. In this table, a numeric
value inside a parenthesis denotes the ratio of the time of the considered method to that of the
triangular elements with the same value of order p. From this table, it can be seen that the nodal
DG methods using the quadrilateral elements are approximately 1.4 to 5.4 times more efficient than
those using the triangular elements for a required accuracy. The quadrilateral elements employing
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the LG nodal set are typically two times more efficient than those using the LGL nodal set.
Our numerical results provide clear evidence that there is a benefit in using quadrilateral ele-

ments, especially, with the LG nodal set. For a low order p, the methods using the quadrilateral
elements would be faster or as fast as the methods using the triangular elements (given that the
quadrilateral mesh consists roughly of half as many elements as the triangular mesh) to reach the
final time of a simulation. Due to the fact that the nodal basis on a quadrilateral can represent more
cross terms of polynomials than the nodal basis on a triangle, it could be expected in general that
the approximate solutions from the quadrilateral elements would have better accuracy or, at worst,
approximately the same accuracy with those from the triangular elements (which unfortunately we
do not know a priori for a general problem). This expectation makes the use of the quadrilateral
elements particularly appealing for the low to moderate order p since this implies that the methods
with the quadrilateral elements would likely be more efficient in order to obtain a required level of
accuracy. If the former scenario is the case, the use of quadrilateral elements with higher order p
is still appealing due to their higher accuracy per cost as has been shown here.
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Table 1: Computing times corresponding to a given value of error ǫ of different types of elements.

Order of basis p

Method 1 2 3 4 5 6 7 8
ǫ =2.0E-1 ǫ =1.0E-2 ǫ =1.0E-3 ǫ =2.0E-4 ǫ =2.0E-5 ǫ =5.0E-6 ǫ =1.0E-6 ǫ =1.0E-7

Tri. Elementsa 58.01 153.37 415.19 433.69 657.62 635.83 699.61 1121.40

Sq. Elements, LGLb 38.54(1.5) 87.74(1.7) 185.56(2.2) 186.05(2.3) 283.57(2.3) 270. 74(2.3) 373.36(1.8) 638.15(1.8)

Sq. Elements, LGc 40.18(1.4) 59.98(2.6) 86.39(4.8) 91.80(4.7) 122.76(5.4) 142.52(4.5) 196.93(3.6) 367.58(3.1)

Skewed elements, LGLd 41.33(1.4) 91.58(1.7) 177.90(2.3) 214.43(2.0) 294.89(2.2) 336.31(1.9) 414.67(1.7) 742.28(1.5)

Skewed elements, LGe 35.21(1.6) 56.97(2.7) 85.02(4.9) 83.85(5.2) 155.12(4.2) 169.49(3.8) 227.57(3.1) 393.41(2.9)
a Triangular elements, b Square elements with the LGL nodal set, c Square elements with the LG nodal set,
d Skewed-rectangular elements with the LGL nodal set, e Skewed-rectangular elements with the LG nodal set
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(a) Triangular elements (b) Square elements with LGL points
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Figure 5: ‖u − uh‖N ,∞ at t = 0.8 versus computing time (in seconds) used for meshes of three
different resolution. (a) triangular elements, (b) square elements with the LGL nodal set, (c)
square elements with the LG nodal set. Different symbols represent (successively) solutions for
p = 1 through p = 8.

1.5 Automatic mesh generation

Starting with only a target element size and points defining the boundary and bathymetry / topog-
raphy of the domain, the goal of the mesh generator being developed is to automatically produce
a high-quality mesh from this minimal set of input. From the geometry provided, properties such
as local features, curvature of the boundary, bathymetric/topographic gradients, and approximate
flow characteristics can be extracted, which are used to determine local element sizes. The result
is a high quality mesh, with the correct amount of refinement where it is needed to resolve all of
the geometry and flow characteristics of the domain. Techniques incorporated include the use of
the so-called signed distance function, which is used to determine critical geometric properties, the
approximation of piecewise linear coastline data by smooth cubic splines, a so-called mesh function
used to determine element sizes and control the size ratio of neighboring elements, and a force-
displacement method which iterates to improve the element quality of the mesh. Figure (1.5) shows
a finite element mesh generated automatically using the developed mesh generation tool.
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Figure 6: ‖u − uh‖N ,∞ at t = 0.8 versus computing time (in seconds) used in the methods of
different element types of fixed p. (a) p = 1, (b) p = 2, (c) p = 3, and (d) p = 4.
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Figure 8: A portion of a finite element mesh along a coastline constructed automatically using the
developed automatic mesh generation tool.
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